
SECTION 3-3: DERIVATIVE RULES

1. Using what you know about the graphs of the functions below, determine their derivatives

f(x) = 10 g(x) = x h(x) = ⇡x j(x) = ⇡x+ 1

f 0(x) = g0(x) = h0(x) = j0(x) =

2. Use the definition of the derivative to find the derivatives for each of the following functions:

(a) f(x) = x2

(b) f(x) = x3

3. Recall the following results below:
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4. Use the data above to fill in the rules below. Assume c and n are fixed numbers.
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5. Use the graphs of f(x) = sin(x) and g(x) = cos(x) (below) to sketch the graph of their derivatives

f 0(x) and g0(x).

f(x) = sin(x)
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g(x) = cos(x)
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6. Base on the work above, guess answers:
d

dx
[sin(x)] = d

dx [cos(x)] =

7. Four Big Rules

(a) Constant Multiple (b) Sum (and Difference)

(c) Product (d) Quotient
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