SECTION 3-3: DERIVATIVE RULES

1. Using what you know about the graphs of the functions below, determine their derivatives f(x) = 10 g(x) = x $h(x) = \pi x$ $j(x) = \pi x + 1$

 $f'(x) = _ ___$ $g'(x) = _ ___$ $h'(x) = _ ___$ $j'(x) = _ ___$

2. Use the definition of the derivative to find the derivatives for each of the following functions:

(a)
$$f(x) = x^2$$

(b) $f(x) = x^3$

3. Recall the following results below:	work	f(x)	f'(x)
	(worksheet §3.1)	x^{-1}	$-1x^{-2}$
	(§3.1 # 20)	$3x^{-2}$	$-6x^{-3}$
	(§3.2 #59)	$(\sqrt{2})x^{1/2}$	$\frac{\sqrt{2}}{2}x^{-1/2}$

4. Use the data above to fill in the rules below. Assume c and n are fixed numbers.

$$\frac{d}{dx}[c] = \underline{\qquad} \qquad \frac{d}{dx}[x^n] = \underline{\qquad} \qquad \frac{d}{dx}[x^n + c] = \underline{\qquad} \qquad \frac{d}{dx}[cx^n] = \underline{\qquad}$$

3-3 Derivative Rules

5. Use the graphs of $f(x) = \sin(x)$ and $g(x) = \cos(x)$ (below) to sketch the graph of their derivatives f'(x) and g'(x).

(a) Constant Multiple

(b) Sum (and Difference)

(c) Product

(d) Quotient