Lecture: 1-3: New Functions from Old Functions

Example 1: Using transformations, sketch graphs of the following functions. Include a sketch of the parent function as well as the final graph of the given function.
(a) $f(x)=\ln (x-2)+4$

(b) $f(x)=e^{-x}-3$

Example 2: Horizontal and vertical stretching and shrinking. Sketch graphs of the following functions on $[-2 \pi, 2 \pi]$. How do they relate to the parent function $f(x)=\sin x$?
(a) $g(x)=2 \sin x$

(b) $h(x)=\sin (2 x)$

Example 3: Review: completing the square and then using transformations. Use completing the square to write the following functions such that they can be graphed using transformations.
(a) $f(x)=x^{2}-4 x+5$

(b) $f(x)=4 x-x^{2}$

Example 4: How to deal with absolute values. Sketch the graphs of the following functions:
(a) $y=\left|x^{2}-2\right|$
(b) $y=|\cos x|$

Combinations of Functions

Example 5: If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{4-x^{2}}$, find the following functions and their domains.
(a) $(f+g)(x)$
(b) $(f g)(x)$
(c) $(f / g)(x)$

Composition of Functions

Given two functions f and g, the composite function $f \circ g$ is defined by

$$
(f \circ g)(x)=f(g(x)) .
$$

Note: this is a NEW operation and is NOT the same as multiplying f and g.

Example 6: Use the graph below to find the following values or explain why it is undefined.
(a) $f(g(2))$
(b) $(g \circ g)(-2)$

Example 7: If $f(x)=x^{2}$ and $g(x)=x-3$, find the composite functions $f \circ g$ and $g \circ f$. Is it true that $f \circ g=g \circ f$?

Example 8: If $f(x)=\cos x$ and $g(x)=1-\sqrt{x}$ find the following and their domains.
(a) $f \circ g$
(b) $g \circ f$

Example 9: Find $f \circ g \circ h$ if $f(x)=2 /(x+1), g(x)=\cos x$ and $h(x)=\sqrt{x+3}$.

Example 10: What were those functions? Given the following compositions find, f, g and h such that $F=f \circ g \circ h$.
(a) $F(x)=\cos ^{2}(x+9)$
(b) $F(x)=\tan ^{4}\left(x^{2}+1\right)$

Example 11: Suppose g is an even function and let $h=f \circ g$. Is h also an even function?

Example 12: Let f and g be linear functions with equations $f(x)=m_{1} x+b_{1}$ and $g(x)=m_{2} x+b_{2}$. Is $f \circ g$ also a linear function? If so, what is the slope of its graph? What is its y-intercept?

