LECTURE: 1-3: NEW FUNCTIONS FROM OLD FUNCTIONS

Example 1: Using transformations, sketch graphs of the following functions. Include a sketch of the parent function as well as the final graph of the given function.

Example 2: Horizontal and vertical stretching and shrinking. Sketch graphs of the following functions on $[-2\pi, 2\pi]$. How do they relate to the parent function $f(x) = \sin x$?

Example 3: Review: completing the square and then using transformations. Use completing the square to write the following functions such that they can be graphed using transformations.

Example 4: How to deal with absolute values. Sketch the graphs of the following functions:

Combinations of Functions

Example 5: If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{4 - x^2}$, find the following functions and their domains.

Given two functions f and g, the **composite function** $f \circ g$ is defined by

$$(f \circ g)(x) = f(g(x)).$$

Note: this is a **NEW** operation and is **NOT** the same as multiplying f and g.

Example 6: Use the graph below to find the following values or explain why it is undefined.

(a)
$$f(g(2)) = f(5) = [4]$$

And $g(2)$
first, or
the y-value
of g when
 $x = 2$
(b) $(g \circ g)(-2) = g(g(-2)) = g(1) = [4]$
Example 7: If $f(x) = x^2$ and $g(x) = x - 3$, find the composite functions $f \circ g$ and $g \circ f$. Is it true that $f \circ g = g \circ f$?
($f \circ g)(x) = f(g(x))$
 $= f(x-3)$
 $= (x-3)^2$
 $= [x^2-3]$
 $f \circ g \neq g \circ f$, in general. We say that
function composition is a Non commutative operation.
Day 3
 3
 $1-3$ New Functions from Old Functions

Example 8: If $f(x) = \cos x$ and $g(x) = 1 - \sqrt{x}$ find the following and their domains.

(a)
$$(f \circ g)(x) = f(g(x))$$

 $= f(1 - \sqrt{x})$
 $= [\cos(1 - \sqrt{x})]$
note $X \ge 0$ because of \sqrt{x} ,
You conn cosine anything,
So Domain: $[X \ge 7/0 \text{ or } [0, \infty)]$
(b) $(g \circ f)(x) = g(f(x))$
 $= g(\cos x)$
 $= [1 - \sqrt{\cos x}]$
We need $\cos x \ge 0$, this
is hard, let's look at a picture
 $-\frac{1}{27} + \frac{1}{27} \int \frac{1}{27} \int [-\frac{1}{27} \sqrt{37} \sqrt{3$

Example 9: Find $f \circ g \circ h$ if f(x) = 2/(x+1), $g(x) = \cos x$ and $h(x) = \sqrt{x+3}$.

$$f(g(n(x)) = f(g(\sqrt{x+3})) = f(\cos(\sqrt{x+3})) = f(\cos(\sqrt{x+3})) = \frac{2}{\cos(\sqrt{x+3}) + 1}$$

That were those functions? Given the following compositions find,
$$f$$
, g and h such that $F = f \circ g \circ h$.

Example 10: W TIST Å

(a)
$$F(x) = \cos^{2}(x+9) = (\cos(x+9))^{2}$$

 $f(x) = x^{2}$
 $g(x) = \cos x$
 $h(x) = x+9$
(b) $F(x) = \tan^{4}(x^{2}+1)$
 $= (\tan(x^{2}+1))^{4}$
 $f(x) = x^{4}$
 $g(x) = \tan x$
 $h(x) = x^{2}+1$
 $g(x) = x^{2}$
 $f(x) = x^{2}$
 $f(x) = x^{2}$

Example 11: Suppose g is an even function and let $h = f \circ g$. Is h also an even function? or others! inouting -x. 2 (• \mathbf{r}

Try inputting
$$-x$$
: $h(-x) = (f \circ g)(-x)$
 $= f(g(-x))$ be cause g is
 $= f(g(x))$ even $g(-x) = g(x)$
 $= (f \circ g)(x) = h(x);$ so yeg h is even
 $f(x) = m_1x + b_1$ and $g(x) = m_2x + b_2$. Is $f \circ g$ also a

linear function? If so, what is the slope of its graph? What is its *y*-intercept?

$$(f \circ g)(x) = f(g(x)) = f(m_2 x + b_2) = m_1 (m_2 x + b_2) + b_1 = m_1 m_2 x + m_1 b_2 + b_1 = m_1 x + b Day 3 = m x + b 4$$

where
$$m = m_1 m_2$$
 (slope)
and $b = m_1 b_2 + b_1$ (y-int)
Go Yes!, fog is linear

2nd

Day 3