## Lecture: 1-3: New Functions from Old Functions

Example 1: Using transformations, sketch graphs of the following functions. Include a sketch of the parent function as well as the final graph of the given function.
reflects $y=e^{x}$ over


Example 2: Horizontal and vertical stretching and shrinking. Sketch graphs of the following functions on $[-2 \pi, 2 \pi]$.
How do they relate to the parent function $f(x)=\sin x$ ?
(a) $g(x)=2 \sin x \leftarrow$ multiplies $y$-values of $y=\sin x$ by 2 .

This results in a
(b) $h(x)=\sin (2 x) \longleftarrow$ speeds up, oscillates twice as fast.

in general, sin( ax) goes through a cycles in $2 \pi$.

Example 3: Review: completing the square and then using transformations. Use completing the square to write the following functions such that they can be graphed using transformations.
(a) $f(x)=x^{2}-4 x+5$


$$
\text { (b) } f(x)=4 x-x^{2}
$$



$$
\begin{aligned}
& f(x)=x^{2}-4 x+5 \\
& f(x)=x^{2}-4 x+4+5-4 \\
& \begin{array}{l}
\text { this, squared sake it aaa } \\
\text { so frs not } \\
\text { changed. }
\end{array} \\
& f(x)=(x-2)^{2}+1 \\
& y=x^{2} \text { shifted right } 2 \text {, up } 1 \\
& f(x)=-x^{2}+4 x \\
& f(x)=-\left(x^{2}-4 x+4\right)+4 \text { why }+4 \text { ? } \\
& f(x)=-(x-2)^{2}+4 \\
& y=x^{2} \text { reflected over the } \\
& x \text {-axis, shifted right } 2 \text {, up } 4 \text {. }
\end{aligned}
$$

Example 4: How to deal with absolute values. Sketch the graphs of the following functions:
(a) $y=\left|x^{2}-2\right|$

(b) $y=|\cos x|$


To graph $y=|f(x)|$ :
(1) graph $y=f(x)$
(2) all parts of $y=f(x)$ below the $x$-axis
reflect over the $x$-axis. WHy?

Combinations of Functions
Example 5: If $f(x)=\sqrt{x}$ and $g(x)=\sqrt{4-x^{2}}$, find the following functions and their domains.
(a) $(f+g)(x)=f(\mathbf{X})+\boldsymbol{g}(\mathbf{X})$

$$
=\sqrt{x}+\sqrt{4-x^{2}}
$$

need: $\sqrt{x}$ to exist, thus

$$
x \geqslant 0 .
$$

and $\sqrt{4-x^{2}}$ to exist, so
$4-x^{2} \geqslant 0 \leftarrow \begin{aligned} & \text { Warning'. } \\ & \text { Solving this }\end{aligned}$
Solving this is NOT
$-2 \leqslant x \leqslant 2$ like solving
(b)

$$
\begin{aligned}
(f g)(x) & =f(x) \cdot g(x) \\
& =\sqrt{x} \sqrt{4-x^{2}} \\
& =\sqrt{4 x-x^{3}}
\end{aligned}
$$

$D:[0,2]$
(same as (a))
(c) $(f / g)(x)=\frac{f(x)}{g(x)}$
$=\frac{\sqrt{x}}{\sqrt{4-x^{2}}}$

$$
=\sqrt{\sqrt{\frac{x}{4-x^{2}}}}
$$

$D:[0,2)$

Leave out things that make
the
denom.
zens in this case, 2 .

So, Domain is:

$$
0 \leq x \leq 2 \text { or }[0,2]
$$

Composition of Functions

only that part is positive

Given two functions $f$ and $g$, the composite function $f \circ g$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

Note: this is a NEW operation and is NOT the same as multiplying $f$ and $g$.

Example 6: Use the graph below to find the following values or explain why it is undefined.
(a) $f(g(2))=f(5)=4$

(b) $(g \circ g)(-2)=g(g(-2))=g(1)=4$


Example 7: If $f(x)=x^{2}$ and $g(x)=x-3$, find the composite functions $f \circ g$ and $g \circ f$. Is it true that $f \circ g=g \circ f$ ?

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) & (g \circ f)(x) & =g(f(x)) \\
& =f(x-3) & & =g\left(x^{2}\right) \\
& =(x-3)^{2} & & =x^{2}-3
\end{aligned}
$$

$$
=\overline{x^{2}-6 x+9} \sim_{n}
$$

note that $(f \circ g)(x) \neq(g \circ f)(x)$. Thus, $f \circ g \neq g \circ f$, in general. We say that function composition is a non commutative operation.

$$
\text { (a) } \begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(1-\sqrt{x}) \\
& =\cos (1-\sqrt{x})
\end{aligned}
$$

note $x \geqslant 0$ because of $\sqrt{x}$, you can cosine anything,
So Domain: $x \geqslant 0$ or $[0, \infty)$

$$
\text { (b) } \begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(\cos x) \\
& =1-\sqrt{\cos x}
\end{aligned}
$$

we need $\cos x \geqslant 0$, this is hard, lets look at a picture

$$
D: . .\left[-\frac{-\pi}{2},-\frac{3 \pi}{2}\right][-\pi / 2, \pi / 2] \cup[3 \pi / 2,5 \pi / 2] \cup . .
$$

Example 9: Find $f \circ g \circ h$ if $f(x)=2 /(x+1), g(x)=\cos x$ and $h(x)=\sqrt{x+3}$.

$$
\begin{aligned}
f(g(n(x)) & =f(g(\sqrt{x+3})) \\
& =f(\cos (\sqrt{x+3})) \\
& =\frac{2}{\cos (\sqrt{x+3})+1}
\end{aligned}
$$

(a) $F(x)=\cos ^{2}(x+9)=(\cos (\mathbf{x}+\mathbf{9}))^{\mathbf{2}}$

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=\cos x \\
& h(x)=x+9
\end{aligned}
$$

$$
\begin{aligned}
\text { (b) } F(x) & =\tan ^{4}\left(x^{2}+1\right) \\
& =\left(\tan \left(x^{2}+1\right)\right)^{4} \\
\begin{array}{l}
f(x)
\end{array} & =x^{4} \\
g(x) & =\tan x \\
h(x) & =x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=x^{4} \\
& g(x)=\tan (x+1) \\
& h(x)=x^{2}
\end{aligned}
$$

Example 11: Suppose $g$ is an even function and let $h=f \circ g$. Is $h$ also an even function? or others!
Try inputting $-x: \quad h(-x)=(f \circ g)(-x)$

$$
=f(g(-x)) \text {, because } g \text { is }
$$

$$
=f(g(x)) \swarrow \text { even, } g(-x)=g(x)
$$

$$
=(f \circ g)(x)=h(x) \text {; so Yes, hiseven }
$$

Example 12: Let $f$ and $g$ be linear functions with equations $f(x)=m_{1} x+b_{1}$ and $g(x)=m_{2} x+b_{2}$. Is $f \circ g$ also a linear function? If so, what is the slope of its graph? What is its $y$-intercept?

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(m_{2} x+b_{2}\right) \\
& =m_{1}\left(m_{2} x+b_{2}\right)+b_{1} \\
& =m_{1} m_{2} x+m_{1} b_{2}+b_{1} \\
& =m x+b
\end{aligned}
$$

$$
\text { and } b=m_{1} b_{2}+b_{1}(y-i n t)
$$

so Yes!. fog is linear

