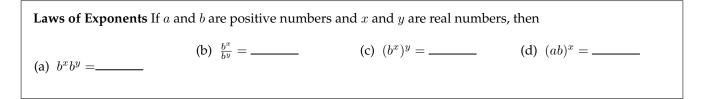
LECTURE: 1-4: EXPONENTIAL FUNCTIONS

Example 1: Suppose you are offered a job that lasts one month. Which of the following methods of payment do you prefer?

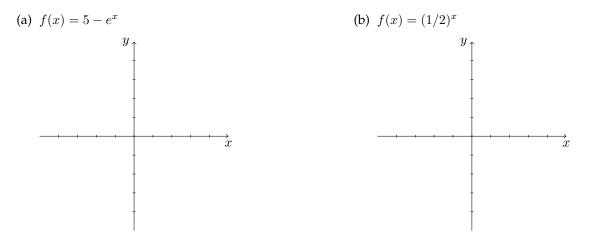
- (a) One million dollars at the end of the month.
- (b) One cent the first day, two cents the second, four cents the third, etc.



Example 2: Use the laws of exponents to simplify the following expressions.

(a) $e^2 e^x$ (b) $(e^{5x})^2$ (c) $\frac{5^2}{5^x}$

Example 3: Graph the following exponential functions.



Example 4: Find the exponential function $f(x) = a \cdot b^x$ who passes through the points (1, 6) and (3, 24).

Example 5: The half-life of strontium-90 is 25 years, meaning half of any given quantity of strontium-90 will disintegrate in 25 years.

- (a) If a sample of strontium-90 has a mass of 100 mg, find an expression for the mass m(t) that remains after t years.
- (b) Find the mass remaning after 40 and 80 years.
- (c) Estimate the time required for the mass to be reduced to 5 mg.

Inverse Functions

Generally speaking, inverse functions are functions that "undo" one another. For example, if I square a number, to undo this operation I take a square root. Thus, $f(x) = x^2$ and $g(x) = \sqrt{x}$ are inverse functions. There are some technicalities to this relationship, but the basic idea that inverses "undo" each other is a good place to start.

Definition: A function *f* is called **one-to one** if it never takes on the same values twice. That is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

Horizontal Line Test A function *f* is one-to-one if and only if no horizontal line intersects its graph more than once.

Example 6: Are the following functions one-to-one?

(a) $f(x) = x^3$ (b) $f(x) = x^2$ (c) $f(x) = e^x$

Definition: Let *f* be a one-to-one function with domain *A* and range *B*. Then its **inverse function** f^{-1} has domain *B* and range *A*. It is defined by

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

for any *y* in *B*.

One consequence of the definition above are the following cancellation equations.

- $f(f^{-1}(x)) = x$ for all x in B
- $f^{-1}(f(x)) = x$ for all x in A

Example 7: If f(1) = 5, f(3) = 7, and f(8) = -10 find the following.

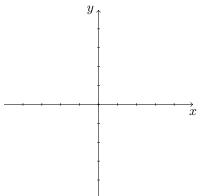
(a) $f^{-1}(7)$ (b) $f^{-1}(5)$

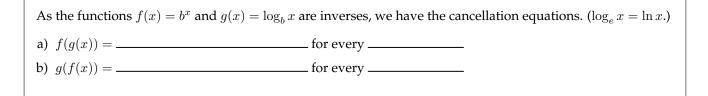
Example 8: Find the inverse of the following functions. Give the domain and range of the inverse.

(a) $f(x) = (x+2)^3 - 5$ (b) $f(x) = \frac{2x+3}{x-5}$

Logarithmic Functions

If $b \neq 1$, the exponential function $f(x) = b^x$ is either increasing or decreasing is therefore one-to-one by the Horizontal Line Test. Thus, this function has an inverse function which we call the **logarithmic function with base** *b* and is denoted $\log_b x$. For b = e sketch a graph of $f(x) = e^x$ and $f^{-1}(x) = \log_e x = \ln x$.





Example 10: Find the exact values of the following expressions.

b) $\ln e^5$

a) $\log_5 125$

Laws of Logarithms If *x* and *y* are positive numbers, then

1. $\log_b(xy) = \log_b x + \log_b y$ 2. $\log_b(x/y) = \log_b x - \log_b y$ 3. $\log_b(x^r) = r \log_b x$

Example 11: Use properties of logarithms to express the following quantities as one logarithm (a) and expand the logarithm in (b).

(a) $\log b + 2 \log c - 3 \log d$

(b)
$$\ln\left(\frac{\sqrt{x^2+5}(x-3)^5}{(x+5)^2}\right)$$

c) $\ln \frac{1}{e^2}$

Example 12: Solve the following equations for *x*.

(a) $\ln(x+5) - 1 = 7$ (b) $e^{2x-5} + 4 = 10$

Example 13: Find the domain of the following functions.

(a)
$$f(x) = \frac{1 - e^{x^2}}{1 - e^{1 - x^2}}$$
 (b) $g(x) = \sqrt{e^x - 2}$

Common Mistakes and Misconceptions

Example 14: Are the following statements true or false? If either case, explain why. If possible, change the false statements so that they are a true statement.

(a)
$$(a+b)^2 = a^2 + b^2$$

(b)
$$\sqrt{x^2 + 4} = x + 2$$

(c)
$$\frac{a+b}{c+d} = \frac{a}{c} + \frac{b}{d}$$

(d)
$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

(e) $\ln(x+y) = \ln x + \ln y$

(f)
$$\frac{\ln x}{\ln y} = \ln\left(\frac{x}{y}\right)$$

(g)
$$\ln(x-y) = \ln\left(\frac{x}{y}\right)$$

(h) $f^{-1}(x) = \frac{1}{f(x)}$

(i) $f^2(x) = (f(x))^2$

UAF Calculus 1