LECTURE NOTES 2-2: THE LIMIT OF A FUNCTION

Things to Know:

- The intuitive definitions of a *limit* and a *one-sided limit*.
- How to find a (one-sided) limit using a calculator or the graph of the function, including infinite limits.
- How to find limits for piecewise-defined

functions.

- How to distinguish between the various ways a limit may *not* exist.
- Understand how using a calculator can give an incorrect answer when evaluating a limit.

Intuitive Idea and Introductory Examples

(Note that this is motivated by our discussion of tangent lines and instantaneous velocity.)

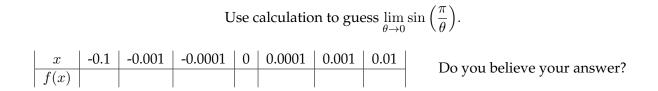
Say: "the limit of f(x), as x approaches a is L''

Write:

It means:

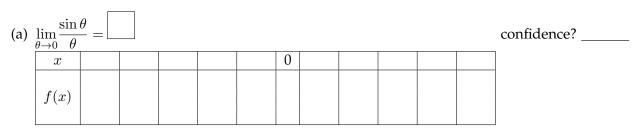
EXAMPLE 1: Use calculation to guess $\lim_{x \to 2} \frac{x-2}{x^2-x-2}$.

What does the table above tell you about the graph of $y = \frac{x-2}{x^2-x-2}$?


EXAMPLE 2: [Why do all the calculation? Just pick a number really close to "a," right???!!]

Use calculation to guess
$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$$
.

Let's just pick numbers super-close to a = 0, say ± 0.000001 : $\begin{vmatrix} t & -0.000001 & 0 & 0.000001 \\ f(t) & DNE & 0.000001 \end{vmatrix}$


Hint: Always be skeptical! Why can't this be right and what went wrong?

EXAMPLE 3: [Sample points may not illustrate the big picture. Theory will be useful.]

Practice Problems

For each problem below, fill out the chart of values, then use the values to *guess* the value of the limit. Finally rate your confidence level on a 0 to 3 scale where (0 = I'm sure this is wrong) and (3 = I'm sure this is right.)

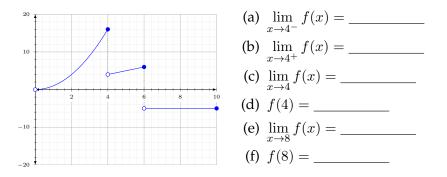
(b)	(b) $\lim_{x \to 2} f(x) = $ where $\begin{cases} x-1 & x \le 2\\ x+1 & x > 2 \end{cases}$										confidence?	
	x						2					
	f(x)											

(c)	(c) $\lim_{x \to 0} \frac{e^{2x} - 1}{x} = $ confidence?												
	x	-0.5	-0.1	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01	0.1	0.5	
	f(x)												

DEFINITIONS:

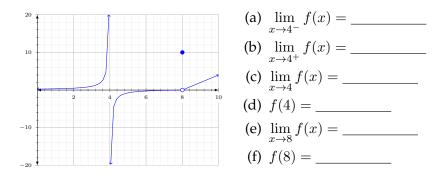
Say: "the limit as x approaches a on the left is L";

Write:


Write:

It means

Say: "the limit as x approaches a on the right is L";


It means

EXAMPLE 4: The function g(x) is graphed below. Use the graph to fill in the blanks.

Practice Problems

2. The function g(x) is graphed below. Use the graph to fill in the blanks.

Write the equation of any vertical asymptote:

EXAMPLE 5: Sketch the graph of an function that satisfies *all* of the given conditions. Could there be more than one correct answer?

 $\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3$ $\lim_{x \to 4^{+}} f(x) = 0 \quad f(0) = -2 \qquad f(4) = 1$

EXAMPLE 6: Determine the limit. Explain your answer.

1. $\lim_{x \to 5^+} \frac{2+x}{x-5}$

2.
$$\lim_{x \to 5^+} \frac{2+x}{5-x}$$

3.
$$\lim_{x \to (\pi/2)^+} \frac{\sec x}{x}$$