Lecture Notes 2-2: The Limit of a Function
Things to Know:

- The intuitive definitions of a limit and a onesided limit.
- How to find a (one-sided) limit using a calculater or the graph of the function, including infinite limits.
- How to find limits for piecewise-defined
functions.
- How to distinguish between the various ways a limit may not exist.
- Understand how using a calculator can give an incorrect answer when evaluating a limit.

Intuitive Idea and Introductory Examples (Note that this is motivated by our discussion of tangent lines and instantaneous velocity.) (Note that this is motivated by our discussion
Say: "the limit of $f(x)$, as x approaches a is L "
Write: $\lim _{x \rightarrow a} f(x)=L$
It means: as x gets closer and closer to $a, f(x)$ can be made arbitrarily close to L.

EXAMPLE 1: Use calculation to guess $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}$.
Pick values close to 2 , plug them in and see what happens.
Q: why is simply plugging in 2 not going to work?
$A: Y /$ get $\%$, undefined.
Let $f(x)=\frac{x-2}{x^{2}-x-2}$

x	1.9	1.99	1.999	2	2.001	2.01	2.1
$f(x)$	0.34483	0.33445	0.33344	$?$	0.33322	0.33223	0.32258

guess: $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-x-2}=\frac{1}{3}$
What does the table above tell you about the graph of $y=\frac{x-2}{x^{2}-x-2}$?
as x gets close to 2 , $f(x)$ (ie. y) gets close to $1 / 3$
we want to formalize the closeness ness
arguement.

EXAMPLE 2: [Why do all the calculation? Just pick a number really close to "a," right???!!]

Use calculation to guess $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$.

Let's just pick numbers super-close to $a=0$, say $\pm 0.000001:$| | t | -0.000001 | 0 | 0.000001 |
| :---: | :---: | :---: | :---: | :---: |
| | $f(t)$ | $\mathbf{0 . 1 6 6 5 3 3 5}$ | DNE | 0.1665335 | Hint: Always be skeptical! Why can't this be right and what went wrong?

If we let $f(t)=\frac{\sqrt{t^{2}+9}-3}{t^{2}}$ you see the graph of $f(t)$ is (roughly),

\uparrow Beth got this using a computer, but some calculators give O for both of these.

EXAMPLE 3: [Sample points may not illustrate the big picture. Theory will be useful.]
Use calculation to guess $\lim _{\theta \rightarrow 0} \sin \left(\frac{\pi}{\theta}\right)$. Let $f(\theta)=\sin (\pi / \theta)$

	$-1 / 10$	$-1 / 1000$	$-1 / 10000$	$1 / 10000$			$1 / 10$
θ	-0.1	-0.001	-0.0001	0	0.0001	0.001	0.01
$f(\theta)$	(1)	(2)	(3)		(4)	(5)	(6)

Do you believe your answer?
(1) $\sin \left(\frac{\pi}{(-1 / 10)}\right)=\sin (-10 \pi)=0$
(2) $\sin (\pi /(-1 / 100))=\sin (-1000 \pi)=0$
(3) $\sin (\pi /(-1 / 10000))=\sin (-10,000 \pi)=0$
(4) $\sin (\pi /(1 / 0000))=\sin (1,000 \pi)=0$
(5) $\sin (\pi /(11000))=\sin (1000 \pi)=0$
(6) $\sin (\pi /(1 / 10))=\sin (10 \pi)=0$.
guess $\lim _{\theta \rightarrow 0} \sin \left(\frac{\pi}{\theta}\right)=0_{3}$
BUT the graph:

Uses a calculator
2-2 The Limit of a Function

Practice Problems

1. For each problem below, fill out the chart of values, then use the values to guess the value of the limit. Finally rate your confidence level on a 0 to 3 scale where ($0=$ I'm sure this is wrong) and (3 = I'm sure this is right.)
(a) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
confidence? \qquad

guess this limit goes to 1 :
picture:

(b) $\lim _{x \rightarrow 2} f(x)=\sqrt{ }^{\text {where }} \begin{cases}|x-1| & x \leq 2 \\ x+1 & x>2\end{cases}$
confidence? \qquad

$$
\begin{aligned}
& \text { as } x \text { increases to } 2, f(x) \rightarrow 1 \\
& \text { as } x \text { decreases to } 2, f(x) \rightarrow 3 \longleftarrow \begin{array}{l}
\text { these dort match, } \\
\text { so the limit does } \\
\text { not exist. }
\end{array}
\end{aligned}
$$

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

\square
It means $x \rightarrow a^{-}$means x is $E S S$ than a, and thus is on the left side of a diagram:
 (here $x<a$) always

Say: "the limit as x approaches a on the right is L ";
It means $x \rightarrow a^{+}$means x is greater than a, and is thus on the right side of a.
 (here $x>a$) always
Practice Problems
2. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=$ \qquad (4 from the left)
(b) $\lim _{x \rightarrow++} f(x)=\frac{4}{\text { (c) }}$ (4 from the right)
(c) $\lim _{x \rightarrow 4} f(x)=$ DNE \leftarrow webAssigh is case-
(d) $f(4)=16$ sensitive.
(e) $\lim _{x \rightarrow 8} f(x)=-5$
(f) $f(8)=$ \qquad -5
3. The function $g(x)$ is graphed below. Use the graph to fill in the blanks.

(a) $\lim _{x \rightarrow 4^{-}} f(x)=$ \qquad \leftarrow gets hugely big
(b) $\lim _{x \rightarrow 4^{+}} f(x)=-\infty \leftarrow$ gets hugely negative big
(c) $\lim _{x \rightarrow 4} f(x)=$ DR E
(d) $f(4)=$ DNE/undetined
(e) $\lim _{x \rightarrow 8} f(x)=0$
(f) $f(8)=$ \qquad

Write the equation of any vertical asymptote:

$$
x=4
$$

\uparrow
must do this! Saying " 4 " is not enough!
4. Sketch the graph of an function that satisfies all of the given conditions. Compare your answer with that of your neighbor.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=-2 & \lim _{x \rightarrow 4^{-}} f(x)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=0 & f(0)=-2 & f(4)=1
\end{array}
$$

There are many correct graphs for this problem \rightarrow

\rightarrow note: constant/small pos. $\# \rightarrow \infty$
5. Determine the limit. Explain your answer. constant/small neg $\# \rightarrow-\infty$
(a) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{x-5}=\infty$
(1) numerator: as $x \rightarrow 5^{+}$the numerator approaches
(2) as $x \rightarrow 5^{+}, x>5$, so $x-5$ is positive, thus the denominator is a small, positive number Thus the limit goes to ∞
(b) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{5-x}=-\infty$
(1) numerator approaches 7
(2) denominator, $x \rightarrow 5^{+}$means $x>5$, so $5-x$ is going to zero but is negative.
Thus the limit goes to $-\infty$
(c) $\lim _{x \rightarrow(\pi / 2)^{+}} \frac{\sec x}{x}=\lim _{x \rightarrow \pi 2^{+}} \frac{1}{x \cos x}$ as $x \rightarrow \pi / 2^{+} \quad \cos x \rightarrow 0$

4. Sketch the graph of an function that satisfies all of the given conditions. Compare your answer with that of your neighbor.

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} f(x)=1 & \lim _{x \rightarrow 0^{+}} f(x)=-2 & \lim _{x \rightarrow 4^{-}} f(x)=3 \\
\lim _{x \rightarrow 4^{+}} f(x)=0 & f(0)=-2 & f(4)=1
\end{array}
$$

5. Determine the limit. Explain your answer.
(a) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{x-5}$
(b) $\lim _{x \rightarrow 5^{+}} \frac{2+x}{5-x}$
(c) $\lim _{x \rightarrow(\pi / 2)^{+}} \frac{\sec x}{x}$
