Lecture Notes 2-5: Continuity (Part 1)

QUESTION: In plain old words in English, what should it mean to say
the function $f(x)$ is continuous at $x=a$?

On the axes below, draw some pictures of graphs that are NOT continuous at some point and label that point with the x-value a. Succinctly describe why it's not continuous.

DEFINITION: A function $f(x)$ is continuous at the number $x=a$ if
\square

EXAMPLES: For each function below, state the numbers for which $f(x)$ is continuous and the numbers for which $f(x)$ is discontinuous. For each point of discontinuity, explain why it is discontinuous.

1. $f(x)$ is graphed below. Assume arrows indicate the function continues in that general direction.

(a) continuous?
(b) discontinuous and why?
(a) continuous?
(b) discontinuous and why?
2. $g(x)= \begin{cases}\cos x & x<0 \\ 2 & x=0 \\ 1-x^{2} & 0<x \leq 1 \\ x-1 & 1<x\end{cases}$

3. $h(x)=\frac{x^{3}-8}{x^{2}-4}$
(a) continuous?
(b) discontinuous and why?
