Lecture Notes 2-5: Continuity (Day 1)
QUESTION: In plain old words in English, what should it mean to say
the function $f(x)$ is continuous at $x=a$?
around $x=a$, the graph of $f(x)$ should have no holes or jumps.

On the axes below, draw some pictures of graphs that are NOT continuous at some point and label that point with the x-value a. Succinctly describe why it's not continuous.

jump dis continuity

jump discontinuity

jump discontinuity

removable discontinuity

jump discontinuity

infinite discontinuity

DEFINITION: A function $f(x)$ is continuous at the number $x=a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

(ie what happens "close" to $x=a$ better be the same as what happens at $x=a$.)

Practice Problems: For each function below, state the numbers for which $f(x)$ is continuous and the numbers for which $f(x)$ is discontinuous. For each point of discontinuity, explain why it is discontenuous.

1. $f(x)$ is graphed below. Assume arrows indicate the function continues in that general direction.

(a) continuous?

$$
(-\infty,-5) \cup(-5,-3) \cup(-3,0) \cup(0,2) \cup(2, \infty)
$$

(b) discontinuous and why?

$$
\begin{aligned}
& x=-5 \text { (infinite) } \lim _{x \rightarrow-5} f(x)=\text { DeE } \\
& x=-3 \text { (jump) } \lim _{x \rightarrow-3} f(x)=\frac{1}{2} \neq 4=f(-3) \\
& x=0(j u m P) \quad \lim _{x \rightarrow 0} f(x)=D N E \\
& x=2 \text { (jump) } \lim _{x \rightarrow 2} f(x)=D N E
\end{aligned}
$$

2. $g(x)= \begin{cases}\cos x & x<0 \\ 2 & x=0 \\ 1-x^{2} & 0<x \leq 1 \\ x-1 & 1<x\end{cases}$
(a) continuous?

$$
(-\infty, 0) \cup(0, \infty)
$$

3. $h(x)=\frac{x^{3}-8}{x^{2}-4}=\frac{(x-2)\left(x^{2}+2 x+4\right)}{(x+2)(x-2)}$
(b) discontinuous and why?

$$
x=0 .
$$

$$
\lim _{x \rightarrow 0} g(x)=1 \neq 2=g(0)
$$

a jump discontinuity
(a) continuous?

$$
(-\infty,-2) \cup(-2,2) \cup(2, \infty)
$$

(b) discontinuous and why?
$x=-2$, infinite discontinuity, $\lim _{x \rightarrow-2} h(x)$ does not exist.
$x=2$, removable discontinuity, $f(2)$ does not exist.

