Lecture Notes 2-5: Continuity (Part 2)

REVIEW: A function $f(x)$ is continuous at the number $x=a$ if

Sketch a function with domain $(\infty,-1) \cup(-1, \infty)$ that has a removable discontinuity at $x=-1$, an infinite discontinuity at $x=0$, and a jump discontinuity $x=1$.

GOALS: In this lesson, we will practice using the definition of continuity, define right- and left-continuity, and learn (\& apply) several very powerful theorems concerning continuous functions.

DEFINITION: A function $f(x)$ is continuous from the right at the number $x=a$ if

A function $f(x)$ is continuous from the left at the number $x=a$ if

QUESTION: Look at your picture above and determine all the a-values for which your function is continuous from the right and those for which your function is continuous from the left.

QUESTION: Why would we want one-sided continuity?

QUESTION: Assume $f(x)$ and $g(x)$ are BOTH continuous at $x=a$, what do you think should be true about the new function $H(x)=f(x)+g(x)$ and how would you JUSTIFY your intuition?

THEOREMS 4, 5, AND 7 (as numbered in your textbook) all tell us that a large family of familiar functions are continuous. Below we will list this collection. The numbering aligns with the textbook theorem.

EXAMPLES:

1. Determine the intervals over which the function $f(x)=\frac{3 e^{x}+\tan x}{5 x}$ is continuous and justify your answer using the Theorems above.
2. Evaluate $\lim _{x \rightarrow \pi / 4} \frac{3 e^{x}+\tan x}{5 x}$ and justify your strategy.

THEOREMS 8 AND 9 (as numbered in your textbook) tell us that continuity is preserved by function composition provided the resulting function is defined.

EXAMPLE: Determine all x-values for which the function $f(x)=\ln \left(\frac{1}{x}-1\right)$ is continuous.

EXAMPLES:

1. Determine the domain of the function $g(r)=\tan ^{-1}\left(1+e^{-r^{2}}\right)$ and explain why $g(r)$ is continuous at every number in its domain.
2. Use continuity to evaluate $\lim _{x \rightarrow 4} 3^{\sqrt{x^{2}-2 x-4}}$.
3. Let $f(x)=1 / x$ and $g(x)=1 / x^{2}$. (a) Find $(f \circ g)(x)$. (b) Explain why $f \circ g$ is not continuous everywhere.

THE INTERMEDIATE VALUE THEOREM: Suppose $f(x)$ is a function such that

- $f(x)$ is continuous on $[a, b]$,
- $f(a) \neq f(b)$, and
- N is a number between $f(a)$ and $f(b)$,
then,

EXAMPLES:

1. Use the Intermediate Value Theorem to show that the equation $x^{4}+x-3=0$ must have a root in the interval $(1,2)$.
2. Give an example of a function $f(x)$ that is defined for every number in the interval $[0,2]$ such that $f(0)=0, f(2)=1$ but there does not exist a single x-value in the interval $(0,2)$ such that $f(x)=1 / 2$.
