Lecture: 2-6 Limits at Infinity [part 1]

Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then
means that the values of $f(x)$ can be made arbitrarily close to L by requiring x to be big enough...

The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Example 1: Sketch a graph of $y=\tan ^{-1} x$ and find the $\lim _{x \rightarrow \infty} \tan ^{-1} x$ and $\lim _{x \rightarrow-\infty} \tan ^{-1} x$.

Example 2: Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below.

Example 2: Find the following limits.
a) $\lim _{x \rightarrow \infty} \frac{1}{7 x+1}$
b) $\lim _{x \rightarrow \infty} \sin x$
c) $\lim _{x \rightarrow \infty} 3 e^{-x}$

Big idea: Often, terms in function we are interested in finding the limit of will reduce to " $\frac{k}{0}$ " or " $\frac{k}{\infty}$ " when we attempt to evaluate them. We can think of these terms as going to...

How to Determine Limits at Infinity: Divide the numerator and denominator by the highest common power between the numerator and denominator.

Example 3: Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{2 x+5}{x-4}$
(b) $\lim _{x \rightarrow \infty} \frac{x+4}{x^{2}+x-3}$

Example 4: Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{3 x^{2}+1}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{2}+1}$
(c) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+5}{3 x^{2}+1}$

Example 5: Find the following limits at infinity.
(a) $\lim _{x \rightarrow \infty} \frac{1+5 e^{x}}{7-e^{x}}$
(b) $\lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)]$

Example 6: Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{x+2}{\sqrt{9 x^{2}+1}}$
(b) $\lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{6}-x}}{x^{3}+1}$

