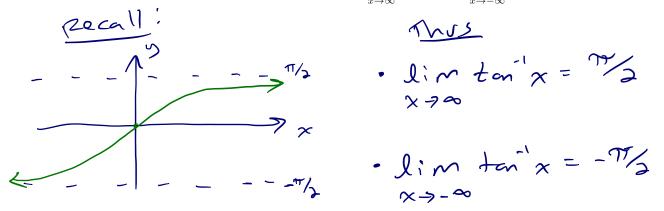
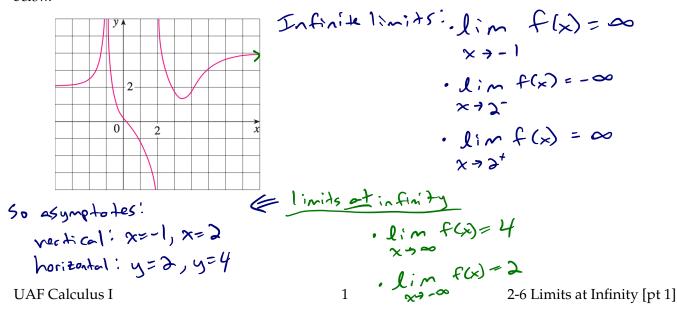

LECTURE: 2-6 LIMITS AT INFINITY [PART 1]

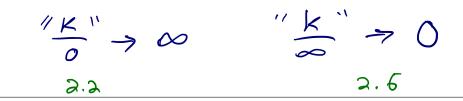
Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then

$$\lim_{x \to \infty} f(x) = 2 \quad (\text{or } \lim_{x \to \infty} f(x) = L)$$


means that the values of f(x) can be made arbitrarily close to *L* by requiring *x* to be big enough...


The line y = L is called a **horizontal asymptote** of the curve y = f(x) if either

$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L$$


Example 1: Sketch a graph of $y = \tan^{-1} x$ and find the $\lim_{x \to \infty} \tan^{-1} x$ and $\lim_{x \to \infty} \tan^{-1} x$.

Example 2: Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below.

Example 2: Find the following limits. a) $\lim_{x \to \infty} \frac{1}{7x+1} = 0$ b) $\lim_{x \to \infty} \sin x = DNE$ c) $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} \frac{3}{e^{-x}} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} 3e^{-x} = 0$ $\lim_{x \to \infty} 3e^{-x} = \lim_{x \to \infty} 3e^{-x} = 0$ $\lim_{x \to \infty} 3e^{-x} = 1$ $\lim_{x \to \infty} 3e^{-x} = 1$ $\lim_{x \to$

How to Determine Limits at Infinity: Divide the numerator and denominator by the highest common power between the numerator and denominator.

Example 3: Find the limit.

(a)
$$\lim_{x \to \infty} \frac{(2x+5) \cdot \frac{1}{x}}{(x-4) \cdot \frac{1}{x}}$$
$$= \int_{x \to \infty}^{x} \frac{2 + \frac{5}{x}}{1 - \frac{4}{y}}$$
$$= \frac{2 + 0}{1 - 6} = \int_{x \to 0}^{x}$$

(b)
$$\lim_{x \to \infty} \frac{(x+4)}{(x^2+x-3)} \cdot \frac{1}{x}$$

= $\lim_{x \to \infty} \frac{1+\frac{4}{x}}{x+1-\frac{3}{x}} = 0$
 $| \frac{1}{(bight)} = 0$

Example 4: Evaluate the following limits.

(a)
$$\lim_{x \to \infty} \frac{2x^2 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(b)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)
$$\lim_{x \to \infty} \frac{2x + 5}{3x^2 + 1} \xrightarrow{1}_{x \to \infty}^{x}$$
(c)

Example 5: Find the following limits at infinity.

(a)
$$\lim_{x \to \infty} \frac{1 + 5e^x}{7 - e^x} \cdot \frac{1}{2e^x}$$

= $2im_{x \to \infty} \frac{1}{2e^x} + 5}{\frac{1}{2e^x} - 1}$
= 55

(b)
$$\lim_{x \to \infty} [\ln(2+x) - \ln(1+x)]$$

= $\lim_{x \to \infty} \ln\left(\frac{2+x}{1+x}\right)$
= $\ln\left(\lim_{x \to \infty} \frac{2+x}{1+x}, \frac{1}{1+x}\right)$
= $\ln\left(\lim_{x \to \infty} \frac{2+x}{1+x}, \frac{1}{1+x}\right)$
= $\ln\left(\lim_{x \to \infty} \frac{2+x}{1+x+1}\right)$
= $\ln\left(1\right) = 0$

Example 6: Find the limit.

Example 6: Find the limit.
(a)
$$\lim_{x \to \infty} \frac{x+2}{\sqrt{9x^2+1}} \cdot \frac{1}{\sqrt{x}}$$

 $= \lim_{x \to \infty} \frac{1+\frac{3}{\sqrt{9x^2+1}}}{\sqrt{9x^2+1}} \cdot \frac{1}{\sqrt{x}}$
 $= \lim_{x \to \infty} \frac{1+\frac{3}{\sqrt{9x^2+1}}}{\sqrt{9x^2+1}} \cdot \frac{1}{\sqrt{9x^2}}$
 $= \lim_{x \to \infty} \frac{1+\frac{3}{\sqrt{9x^2+1}}}{\sqrt{9x^2+1}} \cdot \frac{1}{\sqrt{9x^2}}$
 $= \frac{1}{\sqrt{9x^2+1}} \cdot \frac{1}{\sqrt{9x^2+1}}$

(b)
$$\lim_{x \to \infty} \frac{\sqrt{3x^6 - x}}{x^3 + 1} \cdot \frac{1}{x^3} = \frac{1}{x^3}$$

= $\lim_{x \to \infty} \frac{\sqrt{3x^6 - x}}{1 + \frac{1}{x^3}} = \frac{1}{x^6}$
= $\lim_{x \to \infty} \frac{\sqrt{3x^6 - x}}{1 + \frac{1}{x^3}} = \frac{1}{x^3}$