Lecture: 2-6 Limits at Infinity [part 1]

Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then

$$
\left.\lim _{x \rightarrow \infty} f(x)=2 \quad \text { (or } \lim _{x \rightarrow-\infty} f(x)=2\right)
$$

means that the values of $f(x)$ can be made arbitrarily close to L by requiring x to be big enough...

The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Example 1: Sketch a graph of $y=\tan ^{-1} x$ and find the $\lim _{x \rightarrow \infty} \tan ^{-1} x$ and $\lim _{x \rightarrow-\infty} \tan ^{-1} x$.

Example 2: Find the infinite limits, limits at infinity, and asymptotes for the function f whose graph is shown below.

$$
\begin{aligned}
\text { Infinite inmits: } & \lim _{x \rightarrow-1} f(x)=\infty \\
& f(x)=-\infty \\
& \lim _{x \rightarrow 2^{-}} f(x) \\
& \lim _{x \rightarrow 2^{+}} f(x)=\infty
\end{aligned}
$$

So asymptotes:
vertical: $x=-1, x=2$
horizatal: $y=2, y=4$
UAF Calculus I

Thus

$$
\text { - } \lim _{x \rightarrow \infty} \tan ^{-1} x=\pi / 2
$$

$$
\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\pi / 2
$$

Example 2: Find the following limits.
a) $\lim _{x \rightarrow \infty} \frac{1}{7 x+1}=0$

b) $\lim _{x \rightarrow \infty} \sin x=卫 \sim E$

c) $\lim _{x \rightarrow \infty} 3 e^{-x}=\lim _{x \rightarrow \infty} \frac{3}{e^{x}}=\square$

- $3 \div($ monster \# $)$

$$
\rightarrow 0
$$

Big idea: Often, terms in function we are interested in finding the limit of will reduce to " $\frac{k}{0}$ " or " $\frac{k}{\infty}$ " when we attempt to evaluate them. We can think of these terms as going to...

How to Determine Limits at Infinity: Divide the numerator and denominator by the highest common power between the numerator and denominator.

Example 3: Find the limit.

$$
\text { (a) } \begin{aligned}
& \lim _{x \rightarrow \infty} \frac{(2 x+5) \cdot 1 / x}{(x-4) \cdot 1 / x} \\
= & \lim _{x \rightarrow \infty} \frac{2+5 / x}{1-4 / x} \\
= & \frac{2+0}{1-0}=2
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \lim _{x \rightarrow \infty} \frac{(x+4) \cdot 1 / x}{\left(x^{2}+x-3\right) \cdot 1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{1+4 / x}{x+1-\frac{3}{x}}=0 \\
& 1 \div(\text { big } \#)
\end{aligned}
$$

Example 4: Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{3 x^{2}+1} \cdot 1 / x^{2} x^{2}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{2}+1} \cdot \frac{1}{x}$
(c) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+5}{3 x^{2}+1} \cdot \frac{1}{\cdot 1 / x^{2}} x^{2}$
$=\lim _{x \rightarrow \infty} \frac{2+5 / x^{2}}{3+1 / x^{2}}$
$=\lim _{x \rightarrow \infty} \frac{2+5 x^{\circ}}{3 x+1 x^{0}}$
$=\lim _{x \rightarrow \infty} \frac{2 x+5 / x^{2}}{3+1 / x^{2}}$
$=\frac{2+0}{3+0}=\frac{2}{3}$
$=0$

$$
=\infty
$$

$$
(\text { big } \#) \cdot 2 \div 3 \rightarrow \infty
$$

Example 5: Find the following limits at infinity.
(a) $\lim _{x \rightarrow \infty} \frac{1+5 e^{x}}{7-e^{x}} \cdot 1 / e^{x} \cdot e^{x}$
(b) $\lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)]$

$$
=\lim _{x \rightarrow \infty} \frac{1 / e^{x}+5}{7 / e^{x}-1}
$$

$$
=\lim _{x \rightarrow \infty} \ln \left(\frac{2+x}{1+x}\right)
$$

$$
=-5
$$

$$
=\ln \left(\lim _{x \rightarrow \infty} \frac{2+x}{1+x} \cdot 1 / x\right)
$$

$$
=\ln \left(\lim _{x \rightarrow \infty} \frac{2 / x+1}{1 / x+1}\right)
$$

$$
=\ln (1)=0
$$

Example 6: Find the limit.
(a) $\lim _{x \rightarrow \infty} \frac{x+2}{\sqrt{9 x^{2}+1}} \cdot \frac{1}{x} \cdot 1 / x$
$=\lim _{x \rightarrow \infty} \frac{1+2 / x}{\sqrt{\left(9 x^{2}+1\right) \cdot 1 / x^{2}}}$
$=\lim _{x \rightarrow \infty} \frac{1+2 / x}{\sqrt{9+1 / x^{2}}}$
$=\frac{1}{\sqrt{9}}=1 / 3$

$$
\begin{aligned}
& \text { (b) } \lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{6}-x} \cdot \frac{1}{x^{3}}}{x^{3}+1} \cdot \frac{1}{x^{3}} \quad \frac{1}{x^{3}}=\frac{1}{\sqrt{x^{6}}} \\
= & \lim _{x \rightarrow \infty} \frac{\sqrt{\left(3 x^{6}-x\right)\left(1 / x^{6}\right)}}{1+\frac{1}{x^{3}}} \\
= & \lim _{x \rightarrow \infty} \frac{\sqrt{3-1 / x^{5}}}{1+1 / x^{3}}=\sqrt{3}
\end{aligned}
$$

$x / x=\frac{1}{\sqrt{x^{2}}}$

