Lecture: 2-6 Limits at Infinity (part 2)

Intuitive Definition of a Limit at Infinity Let f be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L \quad\left(\text { or } \lim _{x \rightarrow-\infty} f(x)=L\right)
$$

means that the values of $f(x)$ can be made arbitrarily close to L by requiring x to be big enough or

How do deal with limits as $x \rightarrow-\infty$:

Example 7: Find the limit.
(a) $\lim _{x \rightarrow-\infty} \frac{2 x}{\sqrt{x^{2}+2}}$
(b) $\lim _{x \rightarrow-\infty}\left(5-3 e^{x}\right)$

Example 8: Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{4}+6 x^{2}}-x^{2}\right)$
(b) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$

Example 9: Evaluate the following limits.
(a) $\lim _{x \rightarrow 0^{-}} e^{1 / x}$
(b) $\lim _{x \rightarrow \infty} e^{-2 x} \cos x$

Example 11: Sketch the graph of $y=(x-2)^{4}(x+1)^{3}(x-1)$ by finding its intercepts and its limits as $x \rightarrow \pm \infty$.

Example 12: Find the horizontal and vertical asymptotes of $f(x)=\frac{\sqrt{16 x^{2}+1}}{2 x-8}$.

