LECTURE: 2-6 LIMITS AT INFINITY (PART 2)

Intuitive Definition of a Limit at Infinity Let *f* be a function defined on some interval (a, ∞) or $(-\infty, a)$. Then

$$\lim_{x \to \infty} f(x) = L \quad (\text{or } \lim_{x \to -\infty} f(x) = L)$$

means that the values of f(x) can be made arbitrarily close to L by requiring x to be big enough or

How do deal with limits as $x \to -\infty$:

Example 7: Find the limit.

(a)
$$\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + 2}}$$

(b) $\lim_{x \to -\infty} (5 - 3e^x)$

Example 8: Evaluate the following limits.

(a)
$$\lim_{x \to \infty} (\sqrt{x^4 + 6x^2} - x^2)$$
 (b) $\lim_{x \to \infty} (\sqrt{x^2 + 1} - x)$

Example 9: Evaluate the following limits.

(a) $\lim_{x \to 0^{-}} e^{1/x}$

(b)
$$\lim_{x \to \infty} e^{-2x} \cos x$$

Example 11: Sketch the graph of $y = (x - 2)^4 (x + 1)^3 (x - 1)$ by finding its intercepts and its limits as $x \to \pm \infty$.

Example 12: Find the horizontal and vertical asymptotes of $f(x) = \frac{\sqrt{16x^2 + 1}}{2x - 8}$.