Lecture: 2-8 The Derivative as a Function

The function

$$
f^{\prime}(x)=
$$

\qquad
is called the derivative of f. The value of f^{\prime} at x can be interpreted geometrically as the \qquad of the tangent line to f at the point $(x, f(x))$. Note: f^{\prime} is called the derivative because it has been derived from f using the limit operation defined above. The domain of f^{\prime} is the set of all x such that this limit exists and may be smaller than the domain of f.

Example 1: Let $f(x)=x^{3}-2 x+2$.
(a) Find a formula for $f^{\prime}(x)$.
(b) Illustrate this formula by comparing the graphs of $f(x)$ and $f^{\prime}(x)$, which are shown below.

Example 2: The graph of f is given below. Use it to sketch the graph of the derivative f^{\prime}.

Example 3: If $f(x)=\sqrt{x-5}$ find the derivative of f. State the domain of f and f^{\prime}.

Example 4: If $f(x)=\frac{2-x}{5+2 x}$ find $f^{\prime}(x)$. State the domain of f and f^{\prime}.

Other Notations for $f^{\prime}(x)$

A function f is differentiable at a if $f^{\prime}(a)$ exists. It is differentiable on an open interval (a, b) [or $(a, \infty),(-\infty, a)$ or $(-\infty, \infty)]$ if it is differentiable at every number in the interval.

Example 5: Where do the following functions fail to be differentiable?
(a) $f(x)=|x|$
(b) $f(x)=\frac{1}{x}$

Example 6: Where does $f(x)=\sqrt[3]{x}$ fail to be differentiable? Graph $f(x)$ and explain what the behavior of the tangent line is near this point.

Example 7: A graph of a function $f(x)$ is shown below. State, with reasons, where the function f is not differentiable.

Differentiable Implies Continuous: If f is differentiable at a, then f is continuous at a.

Proof:

Is the converse of this theorem true? That is, if f is continuous at $x=a$ does this imply that f is differentiable at a ? Why or why not?

Higher Derivatives

If f is a differentiable function then its derivative f^{\prime} is a function, so f^{\prime} may also have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$, called the second derivative. Similarly you can also take the derivative of the second derivative, called the third derivative $f^{\prime \prime \prime}$.
Example 8: Given $f(x)=x^{3}-2 x+2$, find and interpret $f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ and $f^{(4)}(x)$. (Note: We found $f^{\prime}(x)=3 x^{2}-2$ in an earlier example.)

