Lecture Notes: Chapters 1 \& 2 Review

Practice Problems:

1. Use the graph of $f(x)$ below to answer the following questions.

(a) Assuming the arrows on the graph indicate a continued curve in that direction, make an educated guess at the domain of the function $f(x)$.

$$
(-\infty, 4) \cup(4,5) \cup(5, \infty)
$$

(b) Find all x-values in the domain of $f(x)$ for which $f(x)$
i. fails to be continuous.

$$
\text { just } x=8 \quad \text { (} 485 \text { are } \text { not in domain) })
$$

ii. fails to be differentiable.

$$
\begin{aligned}
& x=8, x=6 \\
& \text { not cts corner }
\end{aligned}
$$

(c) Evaluate the following limits or explain why they do not exist.
(i) $\lim _{x \rightarrow 4^{-}} f(x)=-\infty$
(v) $\lim _{x \rightarrow 6} f(x)=6$
(ii) $\lim _{x \rightarrow 4^{+}} f(x)=14$
(vi) $\lim _{x \rightarrow 7} f(x)=6$
(iii) $\lim _{x \rightarrow 4} f(x)=D N E$
(vi) $\lim _{x \rightarrow 8} f(x)=$ D NE
(iv) $\lim _{x \rightarrow 5} f(x)=10$
(vii) $\lim _{x \rightarrow 8^{-}} f(x)=G$
2. Given the functions $f(x)$ shown below, graph each derivative $f^{\prime}(x)$. [Superimposed is good.]
(a)

(b)

(c)

3. Evaluate the following limits. Show your work. Make sure you are writing your mathematics correctly and clearly.
(a) $\begin{aligned} \lim _{t \rightarrow 2}\left(\frac{t^{2}-4}{t^{3}-3 t+5}\right)^{3}= & \left(\lim _{t \rightarrow 2} \frac{t^{2}-4}{t^{3}-3 t+5}\right)^{3} \\ \text { cts ct } & (4-4\end{aligned}$ $t=2$

$$
=\left(\frac{4-4}{8-6+5}\right)^{3}=\square
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow 4^{-}} \frac{x^{2}+3 x}{x^{2}-x-12} & =\lim _{x \rightarrow 4^{-}} \frac{x(x+3)}{(x-4)(x+3)} \\
& =\lim _{x \rightarrow 4^{-}} \frac{x}{x-4}=-\infty
\end{aligned}
$$

Number approaches +4 Denom. $\rightarrow 0$, but negative
(c)

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}-4 x}{x^{2}-x-12} & =\lim _{x \rightarrow 3} \frac{x(x-4)}{(x-4)(x+3)} \\
& =\lim _{x \rightarrow-3} \frac{x}{x+3}=D N E
\end{aligned}
$$

the limits from the left and right ore different.

$$
\begin{aligned}
& \text { lifforent. } \\
& (\infty \&-\infty \text { respectidy }
\end{aligned}
$$

(d)

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(h-5)^{2}-25}{h} & =\lim _{h \rightarrow 0} \frac{h^{2}-10 h+255}{h} \\
& =\lim _{h \rightarrow 0} h-10=-10
\end{aligned}
$$

4. For each function below, determine all the values in the domain of the function for which the function is continuous.

$$
\begin{aligned}
& \text { (a) } f(x)=\begin{array}{ll}
\frac{3}{x+5} & x<1 \\
\frac{x+1}{2} & 1 \leq x \leq 3 \\
x^{2}-7 & 3<x
\end{array} \\
& x=1: f(1)=\frac{1+1}{2}=1 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{3}{x+5}=\frac{3}{6}=1 / 2 \\
& \lim _{x \rightarrow 1} f(x) \neq f(1) \quad \text { disc. ot } \\
& x=1
\end{aligned}
$$

(b) $g(x)=\frac{2^{x}+1}{\sqrt{1-x}} \quad$ Cts on its domain.

$$
1-x>0 \quad x<1
$$

$c t s$ on $(-\infty, 1)$
5. Find the limit or show that it does not exist.
(a)

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{2-x}{3 x^{2}-x} & =\lim _{x \rightarrow \infty} \frac{2+x}{3 x^{2}+x} \cdot \frac{1 / x}{\cdot 1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{2 / x^{0}+1}{3 x+\frac{1}{4}}=0
\end{aligned}
$$

(b)

$$
\left.\begin{array}{l}
\lim _{x \rightarrow \infty}\left[\ln \left(1+x^{2}\right)-\ln (1+x)\right]=\lim _{x \rightarrow \infty} \ln \left(\frac{1+x^{2}}{1+x}\right) \\
=\ln \left(\operatorname { l i m } _ { x \rightarrow \infty } \left(\frac{1+x^{2}}{1+x} \cdot 1 / x\right.\right. \\
=
\end{array}\right) \quad\left(\lim _{x \rightarrow \infty} \ln x=\infty\right)
$$

$$
\begin{aligned}
& \text { (c) } \lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x}{\sqrt{x^{4}+2 x} \cdot 1 / x^{2}} \cdot 1 / x^{2} \\
& =\lim _{x \rightarrow \infty} \frac{3+2 / x}{\sqrt{1+2 / x^{3}}} \\
& =\frac{3+0}{\sqrt{1+0}}=3
\end{aligned}
$$

$$
x^{2}=\sqrt{x^{4}}
$$

6. The displacement (in feet) of a particle moving in a straight line is given by $s(t)=\frac{2}{t}+10$ where t is measured in seconds.
(a) Find the average velocity from $t=1$ to $t=4$ and include units with your answer.

$$
\begin{aligned}
V_{\text {ave }} & =\frac{s(4)-s(1)}{4-1} \\
& =\frac{\frac{2}{4}+10-\left(\frac{2}{1}+10\right)}{3} \\
& =\frac{\frac{1}{2}+10-2-10}{3} \\
& =\frac{-\frac{3}{2}}{3}=\frac{-1}{3} \text { halves divided } \\
& \text { fy/ sec }
\end{aligned}
$$

(b) Find the instantaneous velocity of the particle when $t=2$ and include units with your answer.

$$
v(t)=s^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\frac{2}{t+h}+10-\left(\frac{2}{t}+10\right)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{t}{t} \frac{2}{t+h}-\frac{2}{t} \cdot(t+h)}{h}
$$

$$
=\lim _{h \rightarrow 0}\left(\frac{2 z-2(t+h)}{t(z+h)}\right) \cdot \frac{1}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-2 k}{t(t+h) x}
$$

$$
=\lim _{h \rightarrow 0} \frac{-2}{t(t+h)}=\frac{-2}{t^{2}}
$$

