
LECTURE: 3-1 DERIVATIVES OF POLYNOMIALS AND

EXPONENTIALS

Derivative of a Constant Function:

d

dx

(c) =

Example 1: Find the derivatives of the following functions.

(a) f(x) = 5.4 (b) g(x) = ⇡

7 (c) h(x) = ln 2

Example 2: Using the definition of the derivative, find the derivatives of the following functions.

(a) f(x) = x

2 (b) f(x) = x

3

The Power Rule: If n is a positive integer, then
d

dx

x

n =
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Example 3: Find the derivatives of the following functions.

(a) f(x) = x

9 (b) y = x

99
(c)

d

dt

(t5)

Using the definition of the derivative you can prove that the following derivatives. Does the power rule
appear to hold for non-integer exponents as well?

(a)
d

dx

✓
1

x

◆
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x
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(b)
d

dx
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x =

1

2
p
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Example 4: Differentiate the following functions.

(a) f(x) =
1

x

5 (b) y = 3
p
x

5

Using the power rule we can find equations of tangent lines much more quickly! We can also find the normal

line, which is defined as the line through a point P that is perpendicular to the tangent line at P .

Example 5: Find equations of the tangent line and normal line to the curve y = x

2p
x at the point (1, 1).
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The Constant Multiple Rule: If c is a constant and f is differentiable function then

d

dx

[cf(x)] = c

d

dx

f(x).

Example 6: Differentiate the following functions.

(a)
d

dx

(5x7) (b)
d

dx

(�3
p
x

5)

The Sum/Difference Rule: If f and g are both differentiable, then

d

dx

[f(x)± g(x)] =
d

dx

f(x)± d

dx

g(x).

Example 7: Find the derivative of y = x

7 + 10x3 � 7x2 + 2x� 9.
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Example 8: Find the points on the curve y = x

4 � 2x2 + 4 where the tangent line is horizontal.

Example 9: Find the derivatives of the following functions.

(a) y = (5x2 � 2)2 (b) f(x) =

p
x+ 2x� 3

x

3

Derivative of the Natural Exponential Function:

d

dx

e

x = e

x

Example 10: Find the derivatives of the following functions.

(a) f(t) =
p
3t+

r
3

t

(b) f(x) = e

x+2 + 4

Example 11: At what point on the curve y = e

x is the tangent line parallel to the line y � 5x = 2?
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Example 13: Biologists have proposed a cubic function to model the length L of an Alaskan rockfish at age A:

L = 0.0155A3 � 0.372A2 + 3.95A+ 1.21

where L is measured in inches and A in years. Calculate
dL

dA

at A = 12 and interpret your answer.

Example 14: The equation of motion of a particle is s = 2t3 � 15t2 + 36t + 1. Find the velocity and acceleration
functions. Then, determine the acceleration when the velocity is zero.

Example 15: Find the following limits.

(a) lim
h!0

(2 + h)5 � 32

h

(b) lim
x!1

x

99 � 1

x� 1
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