Lecture: 3-1 Derivatives of Polynomials and
EXPONENTIAL

Derivative of a Constant Function: $\frac{d}{d x}(c)=$ \qquad
Picture: $y=c$ is a horizontal (def. $y=c ; f(x)=c$ line, as the slope is

$$
z \text { eros, } y^{\prime}=0
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{n} \\
& =\lim _{h \rightarrow 0} \frac{c-c}{n} \\
& =\lim _{h \rightarrow 0} \frac{0}{n} \\
& =0
\end{aligned}
$$

Example 1: Find the derivatives of the following functions.
(b) $g(x)=\pi^{7} \boldsymbol{\chi}^{\text {Some }}$ number.
(c) $h(x)=\ln 2$
also Some
(a) $f(x)=5.4$
don't do this

$$
f^{\prime}(x)=0
$$

$$
f(x)=5.4
$$

$$
=0
$$

$$
g^{3}(x)=0
$$

$$
h^{\prime}(x)=0
$$

Testate its ff! you just said $5.4=0$!
Example 2: Using the definition of the derivative, find the derivatives of the following functions.
(a) $f(x)=x^{2}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x
\end{aligned}
$$

(b) $f(x)=x^{3}$

$$
\begin{aligned}
f^{2}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right) \\
& =3 x^{2}
\end{aligned}
$$

The Power Rule: If n is a positive integer, then $\frac{d}{d x} x^{n}=n X^{n-1}$

Example 3: Find the derivatives of the following functions.
(a) $f(x)=x^{9}$
(b) $y=x^{99}$
(c) $\frac{d}{d t}\left(t^{5}\right)=5 t^{4}$
$f^{\prime}(x)=9 x^{8}$
$y^{3}=99 x^{98}$

Using the definition of the derivative you can prove that the following derivatives. Does the power rule appear to hold for non-integer exponents as well?
(a) $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$ $\frac{d}{d x}\left(x^{-1}\right)=-1 x^{-1-1}=-1 x^{-2}=-1 / x^{2}$
(b) $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$
$\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{1 / 2-1}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2} \cdot \frac{1}{\sqrt{x}}=1 / 2 \sqrt{x}$

Example 4: Differentiate the following functions.
(a) $f(x)=\frac{1}{x^{5}}=\boldsymbol{X}^{-\mathbf{5}} \quad$ (this is still f)
(b) $y=\sqrt[3]{x^{5}}=\left(x^{5}\right)^{1 / 3}=x^{5 / 3}$

$$
\begin{aligned}
& f^{\prime}(x)=-5 x^{-5-1} \\
& f^{\prime}(x)=-5 x^{-6} \\
& f^{\prime}(x)=\frac{-5}{x^{6}}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=\frac{5}{3} x^{5 / 3-1} \\
& y^{\prime}=5 / 3 x^{5 / 3-3 / 3}=5 / 3 x^{2 / 3} \\
& y^{\prime}=\frac{5}{3} \sqrt[3]{x^{2}}
\end{aligned}
$$

Using the power rule we can find equations of tangent lines much more quickly! We can also find the normal line, which is defined as the line through a point P that is perpendicular to the tangent line at P.

Example 5: Find equations of the tangent line and normal line to the curve $y=x^{2} \sqrt{x}$ at the point $(1,1)$.
$y=x^{2} \cdot x^{1 / 2}=x^{4 / 2} x^{1 / 2}=x^{5 / 2}$
$y^{\prime}=5 / 2 x^{5 / 2-1}=\frac{5}{2} x^{3 / 2}$
tan line $m=y^{\prime}(1)=5 / 21^{3 / 2}=5 / 2$
equation is $y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-1=\frac{5}{2}(x-1)$
normal line is \perp to \tan line, its m is $-2 / 5$
line is $y-1=-2 / 5(x-1)$

The Constant Multiple Rule: If c is a constant and f is differentiable function then

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h}=c \cdot \lim _{h \rightarrow 0} \frac{d}{d x}[f(x)]=c \frac{d}{d x} f(x) . \\
&=c \cdot f^{\prime}(x)-f(x) \\
& h
\end{aligned}
$$

Example 6: Differentiate the following functions.
(a) $\frac{d}{d x}\left(5 x^{7}\right)=5 \cdot \frac{d}{d x} x^{7}$
(b)

$$
=5 \cdot 7 x^{6}
$$

$$
=35 x^{6}
$$

$$
\begin{aligned}
\frac{d}{d x}\left(-3 \sqrt{x^{5}}\right) & =-3 \cdot \frac{d}{d x} x^{5 / 2} \\
& =-3 \cdot \frac{5}{2} x^{5 / 2-1} \\
& =-\frac{15}{2} x^{3 / 2}=-\frac{15 \sqrt{x^{3}}}{2}
\end{aligned}
$$

The Sum/Difference Rule: If f and g are both differentiable, then

$$
\begin{aligned}
\frac{\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)}{\frac{d}{d x}[f(x)+g(x)]} & =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-(f(x)+g(x))}{h} \\
& =\lim _{h \rightarrow u} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{2} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow u} \frac{g(x+h)-g(x)}{h} \\
& =\frac{d}{d x} f(x)+\frac{d}{d x} g(x)
\end{aligned}
$$

Example 7: Find the derivative of $y=x^{7}+10 x^{3}-7 x^{2}+2 x-9$.

$$
\begin{aligned}
& y^{\prime}=7 x^{6}+10 \cdot 3 x^{2}-7 \cdot 2 x^{1}+2 \cdot 1 x^{0}-0 \\
& y^{\prime}=7 x^{6}+30 x^{2}-14 x+2
\end{aligned}
$$

this means an ordered pair.
Example 8: Find the points on the curve $y=x^{4}-2 x^{2}+4$ where the tangent line is horizontal.
(1) find $y^{\prime}=4 x^{3}-4 x$
(2) set $y^{\prime}=0$ t solve $\Rightarrow 0=4 x^{3}-4 x$

$$
\begin{aligned}
& 0=4 \times\left(x^{2}-1\right) \\
& 0=4 \times(x+1)(x-1) \Rightarrow x=0, \pm 1
\end{aligned}
$$

(3) get y-lord inates:

$$
x=0 \Rightarrow y=4 \quad(0,4)
$$

Example 9: Find the derivatives of the following functions. $+4=3 \quad(1,3)$
you need to do some algebra

Derivative of the Natural Exponential Function: $\frac{d}{d x} e^{x}=e^{x}$

Example 10: Find the derivatives of the following functions.
you cart (yet) do

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
f(t)=\sqrt{3 t}+\sqrt{\frac{3}{t}} \quad \text { you cai } \\
\text { derivatives }
\end{aligned} \\
&=\sqrt{3} \sqrt{t}+\sqrt{3} / \sqrt{t} \text { a number il } \\
&= \sqrt{3} t^{1 / 2}+\sqrt{3} t^{-1 / 2} \\
& f^{\prime}(t)= \sqrt{3} \cdot \frac{1}{2} t^{1 / 2-1}+\sqrt{3}\left(\frac{-1}{2}\right) t^{-1 / 2-1} \\
& f^{\prime}(t)= \frac{\sqrt{3}}{2} t^{-1 / 2}-\frac{\sqrt{3}}{2} t^{-3 / 2}
\end{aligned}
$$ derivatives if there's

$$
\begin{aligned}
\text { (b) } \begin{aligned}
f(x) & =e^{x+2}+4 \\
& =e^{x} \cdot e^{2}+4 \\
& =e^{2} e^{x}+4 \\
f^{\prime}(x) & =e^{2} \cdot e^{x}+0 \\
f^{\prime}(x) & =e^{x+2}
\end{aligned},=\$ \text { }
\end{aligned}
$$

Example 11: At what point on the curve $y=e^{x}$ is the tangent line parallel to the line $y-5 x=2$?
$y-5 x=2 \Rightarrow y=5 x+2$ has slope $m=5$
$y^{\prime}=e^{x}$ is slope of tangent line to $y=e^{x}$,
when does $5=e^{x} \Rightarrow x=\ln 5$
point: $x=\ln 5, \quad y=e^{\ln 5}=5 \quad(\ln 5,5)$

$$
\begin{aligned}
& \begin{array}{l}
\text { so the power rule } \\
\text { applies!. }
\end{array} \\
& \text { (a) } y=\left(5 x^{2}-2\right)^{2} \quad \text { applies!. } \\
& y=\left(5 x^{2}-2\right)\left(5 x^{2}-2\right) \\
& y=25 x^{4}-20 x^{2}+4 \\
& y^{\prime}=25.4 x^{3}-20 \cdot 2 x+0 \\
& y^{\prime}=100 x^{3}-40 x \\
& \text { (b) } f(x)=\frac{\sqrt{x}+2 x-3}{x^{3}}=\left(\mathbf{x}^{1 / 2}+2 \mathbf{X}^{1}-3\right) \mathbf{X}^{-3} \\
& \begin{array}{l}
=\frac{x^{1 / 2} x^{-3}+2 x x^{-3}-3 x^{-3} \begin{array}{l}
\text { those } \\
\text { exponents }
\end{array}}{=x^{-5 / 2}+2 x^{-2}-3 x^{-3} \quad \text { add! }} .
\end{array} \\
& f^{\prime}(x)=-\frac{5}{2} x^{-5 / 2-1}+2(-2) x^{-2-1}-3(-3) x^{-3-1} \\
& f^{\prime}(x)=-\frac{5}{2} x^{-7 / 2}-4 x^{-3}+9 x^{-4}
\end{aligned}
$$

Example 13: Biologists have proposed a cubic function to model the length L of an Alaskan rockfish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Calculate $\frac{d L}{d A}$ at $A=12$ and interpret your answer.

$$
\begin{aligned}
\frac{d L}{d A} & =0.0155\left(3 A^{2}\right)-0.312(2 A)+3.95 \\
\frac{d L}{d A} & =0.0465 A^{2}-0.744 A+3.95 \\
\left.\frac{d L}{d A}\right|_{A=12} & =0.0465\left(12^{2}\right)-0.744(12)+3.95
\end{aligned}
$$

$$
=1.718 \text { in } / \text { year } \quad \begin{aligned}
& \text { Rockfish } \\
& \text { in } / \text { year. }
\end{aligned}
$$

Example 14: The equation of motion of a particle is $s=2 t^{3}-15 t^{2}+36 t+1$. Find the velocity and acceleration functions. Then, determine the acceleration when the velocity is zero.

$$
\begin{aligned}
& v(t)=s^{\prime}(t)=6 t^{2}-30 t+36 \\
& a(t)=v^{\prime}(t)=12 t-30 \\
& v(t)=0 \Rightarrow 0=6\left(t^{2}-5 t+6\right) \\
& 0=(t-2)(t-3) \\
& t=2,3 \\
& a(2)=24-30=-6 \mathrm{~m} / \mathrm{s}^{2} \\
& a(3)=36-30=6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { (a) } \lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{2}(a)^{(b)} \lim _{x \rightarrow 1} \frac{x^{99}-1}{x-1}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
f(x)=x^{5}, a=2 & f(x)=x^{99}, a=1
\end{array}
$$

This is the derivative of $f(x)$

$$
\text { (a) } a=2 \text {. }
$$

Thus, the limit is $f^{\prime}(2)=5 \cdot 2^{4}$

$$
=5(16)
$$

