Lecture: 3-2 The Product and Quotient Rules [part 2] AND INTRO TO 3-3

Recall the derivative rules we have so far:

- Power rule: $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- Constant multiple rule: $(c f(x))^{\prime}=c f^{\prime}(x)$
- Sum/difference rule: $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
- Product rule: $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$
- Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$

1. Differentiate the following.
(a) $f(x)=(x-4 \sqrt{x}) e^{x}$
(b) $y=\frac{\sqrt{x}}{1+2 x}$
(c) $g(x)=\frac{a x+b}{c x+d}$
2. Find the derivative in two ways: (i) product rule and (ii) first multiply out.
$f(x)=\left(x+x^{2}\right)\left(x^{-1}+3\right)$
3. Find an equation of the tangent line and normal line to the given curve $y=2 \sqrt{x} e^{x}+1$ at the point $(0,1)$.
4. A manufacturer produces socks. The quantity q of these socks (measured in pairs of socks) that are sold are a function of the selling price p (in dollars), so we can write $q=f(p)$. Then the total revenue earned with a selling price p is $R(p)=p f(p)$.
(a) What does it mean to say $f(10)=20,000$ and $f^{\prime}(10)=3,500$?
(b) Assuming the values in part (a), find $R^{\prime}(10)$ and interpret your answer.

3-3: Intro to Derivatives of Trigonometric Functions

Example 1: Use the graph of $y=\sin x$ to sketch a graph of y^{\prime}. Guess what y^{\prime} is.

Example 2: Use the graph of $y=\cos x$ to sketch a graph of y^{\prime}. Guess what y^{\prime} is.

Example 3: Using the derivatives we just found, let us find the derivative of $f(x)=\tan x$. What is the domain of $f^{\prime}(x)$?

