LECTURE: 3-2 THE PRODUCT AND QUOTIENT RULES [PART 2] AND INTRO TO 3-3

Recall the derivative rules we have so far:

- **Power rule:** $(x^n)' = nx^{n-1}$
- Constant multiple rule: (cf(x))' = cf'(x)

,

- Sum/difference rule: $(f \pm g)' = f' \pm g'$
- **Product rule:** (fg)' = fg' + f'g
- Quotient rule: $\left(\frac{f}{g}\right)' = \frac{gf' fg'}{g^2}$

1. Differentiate the following.

1. Differentiate the following.
(a)
$$f(x) = (x - 4\sqrt{x})e^x = (x - 4x^{1/2})e^x$$

 $f'(x) = (1 - 2x^{-1/2})e^x + (x - 4x^{1/2})e^x$
 $f'(x) = (1 - 2x^{-1/2})e^x + (x - 4x^{1/2})e^x$

(b)
$$y = \frac{\sqrt{x}}{1+2x}$$

 $G' = (1+3x), \frac{1}{2\sqrt{x}} - 2\sqrt{x}$
 $(1+3x)^{2}$

$$= \frac{1}{2\pi^{2}} + 4\pi^{2} - 24\pi^{2} = \frac{1}{2\pi^{2}} - 4\pi^{2} - 4\pi^{$$

(c) $g(x) = \frac{ax+b}{cx+d}$

$$g'(x) = \frac{(cx+d)(a) - (ax+b)(c)}{(cx+d)^2}$$

$$= \frac{aex+ad - aex-bc}{(cx+d)^2} = \int \frac{ad-bc}{(cx+d)^2}$$

2. Find the derivative in two ways: (i) product rule and (ii) first multiply out.

$$f(x) = (x + x^{2})(x^{-1} + 3)$$

$$i) (x + x^{2})(-x^{-2}) + (|+2x)(x^{-1} + 3)$$

$$= -x^{-1} - (+x^{-1} + 3 + 2 + 6x)$$

$$= 6x + 4$$

$$f'(x) = 6x + 4$$

3. Find an equation of the tangent line and normal line to the given curve $y = 2\sqrt{x}e^x + 1$ at the point (0, 1).

4. A manufacturer produces socks. The quantity q of these socks (measured in pairs of socks) that are sold are a function of the selling price p (in dollars), so we can write q = f(p). Then the total revenue earned with a selling price p is R(p) = pf(p).

(a) What does it mean to say f(10) = 20,000 and f'(10) = 3,500?

٨

· F(10)= 20,000 mens if socles are \$10 each, 20,000 pairs will be sold

(b) Assuming the values in part (a), find R'(10) and interpret your answer.

= pf(p) + l.f(p) product rule! R'(p) = (pf(p))'R'(10) = 10(3500) + 20,000 = 55,000Mente price is \$10, revenue is increasing at a rate of \$ 55,000 per \$1 increase in price

UAF Calculus I

3-3: INTRO TO DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Example 1: Use the graph of $y = \sin x$ to sketch a graph of y'. Guess what y' is.

 $y' = \cos \chi \frac{1}{2}$

y=sinx

Example 2: Use the graph of $y = \cos x$ to sketch a graph of y'. Guess what y' is.

Example 3: Using the derivatives we just found, let us find the derivative of $f(x) = \tan x$. What is the domain of f'(x)?

