Lecture: 3-2 The Product and Quotient Rules [part 2] AND INTRO TO 3-3

Recall the derivative rules we have so far:

- Power rule: $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- Constant multiple rule: $(c f(x))^{\prime}=c f^{\prime}(x)$
- Sum/difference rule: $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
- Product rule: $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$
- Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
(a)

$$
\begin{aligned}
& \text { 1. Differentiate the following. } \\
& \text { (a) } f(x)=(x-4 \sqrt{x}) e^{x}=\left(x-4 x^{1 / 2}\right) e^{x} \\
& f^{\prime}(x)=\left(1-2 x^{-1 / 2}\right) e^{x}+\left(x-4 x^{1 / 2}\right) e^{x} \\
& =\left(1-\frac{2}{\sqrt{x}}+x-4 \sqrt{x}\right) e^{x}
\end{aligned}
$$

(b) $y=\frac{\sqrt{x}}{1+2 x}$

$$
\begin{aligned}
& y^{\prime}=\frac{(1+2 x) \cdot \frac{1}{2 \sqrt{x}}-2 \sqrt{x}}{(1+2 x)^{2}} \\
&=\frac{\frac{1}{2 \sqrt{x}}+\sqrt{x}-2 \sqrt{x}}{(1+2 x)^{2}} \\
&=\frac{1}{2 \sqrt{x}}-\sqrt{x} \\
&(1+2 x)^{2} \frac{1}{\sqrt{x}(1+2 x)^{2}} \\
& \text { (c) } g(x)=\frac{a x+b}{2 x}
\end{aligned}
$$

(c) $g(x)=\frac{a x+b}{c x+d}$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{(c x+d)(a)-(a x+b)(c)}{(c x+d)^{2}} \\
& =\frac{a+x+a d-a c x-b c}{(c x+d)^{2}}=\frac{a d-b c}{(c x+d)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. Find the derivative in two ways: (i) product rule and (ii) first multiply out. } \\
& \begin{array}{l}
f(x)=\left(x+x^{2}\right)\left(x^{-1}+3\right) \\
\text { i) }\left(x+x^{2}\right)\left(-x^{-2}\right)+(1+2 x)\left(x^{-1}+3\right) \quad \begin{array}{r}
i i) \\
= \\
=
\end{array} x^{-1}+3 x+x^{2}+4 x+x^{-1}+3 x^{2} \\
=-x^{-1}-1+x^{-1}+3+2+6 x \quad f^{\prime}(x)=6 x+4 \\
=6 x+4
\end{array}
\end{aligned}
$$

3. Find an equation of the tangent line and normal line to the given curve $y=2 \sqrt{x} e^{x}+1$ at the point $(0,1)$.

$$
y^{\prime}=2\left(\sqrt{x} e^{x}+\frac{1}{2 \sqrt{x}} e^{x}\right) \quad x=0 \quad \text { who } \ldots \div b y \text { ! }
$$

trogent line has undefined slope thous point $(0,1)$:
i.e., $x=0$ - equation of tangent line
normal line:

4. A manufacturer produces socks. The quantity q of these socks (measured in pairs of socks) that are sold are a function of the selling price p (in dollars), so we can write $q=f(p)$. Then the total revenue earned with a selling price p is $R(p)=p f(p)$.
(a) What does it mean to say $f(10)=20,000$ and $f^{\prime}(10)=3,500$?

- $f(10)=20,000$ mems if sucks are $\$ 10$ each, 20,000 pairs will be sold
- $f^{\prime}(10)=3,500$: At the price of $\$ 10$,
the number of socks sold is increasing at 3500 socks
(b) Assuming the values in part (a), find $R^{\prime}(10)$ and interpret your answer.

$$
\begin{aligned}
R^{\prime}(p) & =(p f(p))^{\prime} \\
& =p f^{\prime}(p)+1 \cdot f(p) \\
R^{\prime}(10) & =10(3500)+20,000=55,000
\end{aligned}
$$

Wen te price is $\$ 10$, revence is increasing at a rate of $\$ 55,000$ per $\$ 1$ increase in price

3-3: Intro to Derivatives of Trigonometric Functions

Example 1: Use the graph of $y=\sin x$ to sketch a graph of y^{\prime}. Guess what y^{\prime} is.

$$
\begin{aligned}
& y=\sin x \\
& y^{\prime}=\cos x!!
\end{aligned}
$$

Example 2: Use the graph of $y=\cos x$ to sketch a graph of y^{\prime}. Guess what y^{\prime} is.

$$
y^{\prime}=-\sin x
$$

Example 3: Using the derivatives we just found, let us find the derivative of $f(x)=\tan x$. What is the domain of $f^{\prime}(x)$?

$$
f(x)=\frac{\sin x}{\cos x} \leqslant \text { quotient rule! }
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\cos x(\cos x)-\sin x(-\sin x)}{(\cos x)^{2}} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

