Lecture: 3-3 Derivatives of Trigonometric Functions

Recall last time we found $\frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}(\cos x)$.

Example 1: Using the derivative of $\sin x$ and $\cos x$ find derivatives of:
(a) $y=\cot x$
(b) $y=\csc x$

Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=$ \qquad - $\frac{d}{d x}(\csc x)=$ \qquad
- $\frac{d}{d x}(\cos x)=$
- $\frac{d}{d x}(\sec x)=$ \qquad
- $\frac{d}{d x}(\tan x)=$ \qquad
- $\frac{d}{d x}(\cot x)=$ \qquad

Example 2: Find the second derivatives of the following functions:
(a) $g(t)=4 \sec t+\tan t$.
(b) $y=x^{2} \sin x$.

Example 3: Find an equation of the tangent line to the curve $y=\frac{1}{\sin x+\cos x}$ at the point $(0,1)$.

Example 4: For what values of x does the graph of $f(x)=x+2 \sin x$ have a horizontal tangent?

Example 5: Differentiate $f(x)=\frac{\sec x}{1-\tan x}$ and determine where the tangent line is horizontal.

Generalized Product Rule: How does the product rule genearlize to more than two functions? For example, what is the derivative of $y=f(x) g(x) h(x)$?

Example 6: Differentiate $h(\theta)=\theta^{2} \tan \theta \sec \theta$.

Example 7: Find the 51st derivative of $f(x)=\sin x$. Specifically, find the first four or five derivatives and look for a pattern.

Example 8: A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t)=$ $8 \sin t$, where t is in seconds and x is in centimeters.
(a) Find the velocity at time t.
(b) Find the position and velocity of the mass at time $t=2 \pi / 3$. In what direction is it moving at this time?

Example 9: A ladder 12 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta=\frac{\pi}{6}$.

