LECTURE: 3-3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Recall last time we found $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x)$.

Example 1: Using the derivative of $\sin x$ and $\cos x$ find derivatives of:

(a)
$$y = \cot x$$

(b)
$$y = \csc x$$

Derivatives of Trigonometric Functions:

$$\bullet \ \frac{d}{dx}(\sin x) = \underline{\hspace{1cm}}$$

$$\bullet \ \frac{d}{dx}(\cos x) = \underline{\hspace{1cm}}$$

•
$$\frac{d}{dx}(\tan x) = \underline{\hspace{1cm}}$$

•
$$\frac{d}{dx}(\csc x) =$$

•
$$\frac{d}{dx}(\sec x) = \underline{\hspace{1cm}}$$

•
$$\frac{d}{dx}(\cot x) = \underline{\hspace{1cm}}$$

Example 2: Find the second derivatives of the following functions:

(a)
$$g(t) = 4 \sec t + \tan t$$
.

(b)
$$y = x^2 \sin x$$
.

Example 3: Find an equation of the tangent line to the curve $y = \frac{1}{\sin x + \cos x}$ at the point (0,1).

