
LECTURE: 3-3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

Recall last time we found d
dx (sinx) = cosx and d

dx (cosx).

Example 1: Using the derivative of sinx and cosx find derivatives of:

(a) y = cotx (b) y = cscx

Derivatives of Trigonometric Functions:

• d
dx (sinx) =

• d
dx (cosx) =

• d
dx (tanx) =

• d
dx (cscx) =

• d
dx (secx) =

• d
dx (cotx) =

Example 2: Find the second derivatives of the following functions:

(a) g(t) = 4 sec t+ tan t. (b) y = x2 sinx.

Example 3: Find an equation of the tangent line to the curve y =
1

sinx+ cosx
at the point (0, 1).
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Example 4: For what values of x does the graph of f(x) = x+ 2 sinx have a horizontal tangent?

Example 5: Differentiate f(x) =
secx

1� tanx
and determine where the tangent line is horizontal.

Generalized Product Rule: How does the product rule genearlize to more than two functions? For example, what
is the derivative of y = f(x)g(x)h(x)?

Example 6: Differentiate h(✓) = ✓2 tan ✓ sec ✓.
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Example 7: Find the 51st derivative of f(x) = sinx. Specifically, find the first four or five derivatives and look for
a pattern.

Example 8: A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is x(t) =
8 sin t, where t is in seconds and x is in centimeters.

(a) Find the velocity at time t.

(b) Find the position and velocity of the mass at time t = 2⇡/3. In what direction is it moving at this time?

Example 9: A ladder 12 feet long rests against a vertical wall. Let ✓ be the angle between the top of the ladder and
the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away
from the wall, how fast does x change with respect to ✓ when ✓ = ⇡

6 .
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