Lecture: 3-3 Derivatives of Trigonometric Functions
Recall last time we found $\frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}(\cos x)$.

Example 1: Using the derivative of $\sin x$ and $\cos x$ find derivatives of:

$$
\begin{aligned}
& \text { (a) } y=\cot x=\frac{\cos x}{\sin x} \\
& y^{\prime}=\frac{\sin x(\cos x)^{\prime}-\cos x(\sin x)^{\prime}}{(\sin x)^{2}} \\
& =-\frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
& =-\frac{1}{\sin ^{2} x}=-\csc ^{2} x
\end{aligned}
$$

Derivatives of Trigonometric Functions:

- $\frac{d}{d x}(\sin x)=$ \qquad $\cos x$
- $\frac{d}{d x}(\cos x)=$ $\frac{-\sin x}{2}$
- $\frac{d}{d x}(\tan x)=$ $\sec ^{2} x$

$$
\text { (b) } \begin{aligned}
y & =\csc x=\frac{1}{\sin x} \\
y^{\prime} & =\frac{\sin x\left(x^{2}-1(\sin x)^{\prime}\right.}{(\sin x)^{2}} \\
& =-\frac{\cos x}{\sin ^{2} x}=-\cot x \csc x
\end{aligned}
$$

Example 4: For what values of x does the graph of $f(x)=x+2 \sin x$ have a horizontal tangent?

$$
\begin{gathered}
f^{\prime}(x)=1+2 \cos x=0 \\
\cos x=-1 / 2 \\
x=\frac{2 \pi}{3}+2 k \pi \\
0 \quad \frac{4 \pi}{3}+2 k \pi
\end{gathered}
$$

Example 5: Differentiate $f(x)=\frac{\sec x}{1-\tan x}$ and determine where the tangent line is horizontal.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1-\tan x)(\sec x \tan x)-\sec x\left(-\sec ^{2} x\right)}{(1-\tan x)^{2}} \\
& =\frac{\sec x\left(\tan x-\tan ^{2} x+\sec ^{2} x\right)}{(1-\tan x)^{2}} \quad c^{2}+s^{2}=1 \\
& =\frac{\sec x(\tan x+1)}{(1-\tan x)^{2}} \quad \sec x=0 \quad x \quad-\sec x+1=0 \\
& \tan x=-1 \quad x^{3} \quad x / 4
\end{aligned}
$$

Generalized Product Rule: How does the product rule genearlize to more than two functions? For example, what is the derivative of $y=f(x) g(x) h(x)$? $\quad f(x),(g(x) h(x))$
power rule within power rule!

$$
y^{\prime}=f(x)\left(g(x) \cdot h^{\prime}(x)+g^{\prime}(x) h(x)\right)+f^{\prime}(x)(g(x) h(x))
$$

Example 6: Differentiate $h(\theta)=\theta^{2}(\tan \theta \sec \theta$.)

$$
\begin{aligned}
h^{\prime}(\theta) & =\theta^{2}(\tan \theta \sec \theta)^{\prime}+2 \theta \tan \theta \sec \theta \\
& =\theta^{2}\left(\tan \theta \cdot \sec \theta \tan \theta+\sec ^{2} \theta \sec \theta\right)+2 \theta \tan \theta \sec \theta \\
= & \theta^{2}\left(\sec \theta \tan ^{2} \theta+\sec ^{3} \theta\right)+2 \theta \tan \theta \sec \theta \\
& \text { or } \\
& \theta \sec \theta\left(\theta \tan ^{2} \theta+\theta \sec ^{2} \theta+2 \tan \theta\right)
\end{aligned}
$$

Example 7: Find the 51st derivative of $f(x)=\sin x$. Specifically, find the first four or five derivatives and look for a pattern.

$$
\begin{aligned}
& f^{\prime}(x)=\cos (x) \\
& f^{\prime \prime}(x)=-\sin x \\
& f^{\prime \prime \prime}(x)=-\cos x \\
& f^{(4)}(x)=\sin x
\end{aligned}
$$

$$
\begin{aligned}
& \cos x \text { or }-\cos x \\
& 52 \text { is divisible by } 4 \text {, so is } \\
& 4 \\
& \text { so } f^{\left(5^{\prime \prime}\right.}(x)=f^{\prime \prime \prime}(x)=-\cos x
\end{aligned}
$$

Example 8: A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t)=$ $8 \sin t$, where t is in seconds and x is in centimeters.
(a) Find the velocity at time t.

$$
x^{\prime}(t)=8 \cos t
$$

(b) Find the position and velocity of the mass at time $t=2 \pi / 3$. In what direction is it moving at this time?

$$
\begin{aligned}
& x(2 \pi / 3) \quad x^{\prime}(2 \pi / 3) \\
& \text { position: } x\left(\frac{2 \pi}{3}\right)=8 \sin (2 \pi / 3)=8 \frac{\sqrt{3}}{2}=4 \sqrt{3} \mathrm{~cm} \\
& \text { velocity: } x^{\prime}\left(\frac{2 \pi}{3}\right)=8 \cos \left(\frac{2 \pi}{3}\right)=8(-1 / 2)=-4 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Left

Example 9: A ladder 12 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta=\frac{\pi}{6}$.

$$
\begin{aligned}
\sin \theta & =\frac{x}{12} \\
\Rightarrow x & =12 \sin \theta \\
\frac{d x}{d \theta} & =\frac{d}{d \theta}(12 \sin \theta) \\
& =12 \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& =12 \cos \theta \\
x^{\prime}(\pi / 6) & =12 \cos \pi / 6=\frac{12 \sqrt{3}}{2}=\left[\begin{array}{r}
6 \sqrt{3} \mathrm{ft} \\
\text { radius s }
\end{array}\right.
\end{aligned}
$$

