LECTURE: 3-3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

,

Recall last time we found $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x)$.

Example 1: Using the derivative of $\sin x$ and $\cos x$ find derivatives of:

(a)
$$y = \cot x = \frac{\cos x}{\sin x}$$

(b) $y = \csc x = \frac{1}{\sin x}$
(c) $y = \csc x = \frac{1}{\sin x}$
(b) $y = \csc x = \frac{1}{\sin x}$
(c) $y = \frac{1}{\sin x}$
(c)

•
$$\frac{d}{dx}(\sin x) = \frac{\cos \sqrt{2}}{2}$$

• $\frac{d}{dx}(\cos x) = \frac{-\sin \sqrt{2}}{2}$
• $\frac{d}{dx}(\tan x) = \frac{-\sin \sqrt{2}}{2}$
• $\frac{d}{dx}(\tan x) = \frac{-\sin \sqrt{2}}{2}$
• $\frac{d}{dx}(\cot x) = \frac{-\cos \sqrt{2}}{2}$

Example 2: Find the second derivatives of the following functions:

(a)
$$g(t) = 4 \sec t + \tan t$$
.
(b) $y = x^2 \sin x$.
(c) $y' = 2x\sin x + x^2\cos x$
(c) $y' = 2x\sin x + x^2\cos x$
(c) $y' = 2x\sin x + x\cos x$
(c) $y' = 2x\sin x + x\cos x$
(c) $y' = 2x\sin x + x\cos x$

Example 3: Find an equation of the tangent line to the curve $y = \frac{1}{\sin x + \cos x}$ at the point (0,1).

$$y' = \frac{(1) x ((0) \times (0) - 1 (cos \times -sin \times))}{(sin \times + cos \times)^2}$$

= $\frac{(1) x (cos \times -sin \times)^2}{(sin \times + cos \times)^2} \times = 0$; $y'(c) = \frac{sin 0 - cos 0}{(sin 0 + cos 0)^2} = \frac{-1}{1^2} = -1$
 $(sin \times + cos \times)^2$
 $y - 1 = -1(x - 0)$
 $y = -x + 1$

UAF Calculus I

3-3 Derivatives of Trigonometric Functinos

Example 4: For what values of *x* does the graph of $f(x) = x + 2 \sin x$ have a horizontal tangent?

Example 5: Differentiate $f(x) = \frac{\sec x}{1 - \tan x}$ and determine where the tangent line is horizontal.

$$f'(x) = \frac{(1 - \tan x)(\sec x \tan x) - \sec (-\sec^2 x)}{(1 - \tan x)^2} \qquad (^2 + s^2 = 1)$$

$$= \frac{\sec x (\tan x - \tan^2 x + \sec^2 x)}{(1 - \tan x)^2} \qquad 1 + \tan^2 = \sec^2 (1 - \tan x)^2$$

$$= \frac{\sec x (\tan x + 1)}{(1 - \tan x)^2} \qquad \sec x = 0 \qquad X - n^0 \text{ where } x = 1 \qquad x = 3\pi/4$$

$$\int x = \frac{3\pi}{4} + k\pi$$

Generalized Product Rule: How does the product rule genearlize to more than two functions? For example, what is the derivative of y = f(x)g(x)h(x)?

2

power rule within power rule!

$$g' = f(x)(g(x),h(x) + g'(x)h(x)) + f'(x)(g(x)h(x))$$

Example 6: Differentiate
$$h(\theta) = \theta^{2}(\tan \theta \sec \theta)$$

 $h(0) = \theta^{2}(\tan \theta \sec \theta) + \partial \theta \tan \theta \sec \theta$
 $= \theta^{2}(\tan \theta \sec \theta) + \partial \theta \tan \theta \sec \theta$
 $= \theta^{2}(\tan \theta \sec \theta \tan \theta + \sec^{2}\theta \sec \theta) + \partial \theta \tan \theta \sec \theta$
 $= \theta^{2}(\sec \theta \tan^{2}\theta + \sec^{2}\theta) + \partial \theta \tan \theta \sec \theta$
 $= \theta^{2}(\sec \theta \tan^{2}\theta + \sec^{2}\theta) + \partial \theta \tan \theta \sec \theta$

Example 7: Find the 51st derivative of $f(x) = \sin x$. Specifically, find the first four or five derivatives and look for a pattern.

$$f''(x) = -\sin x \qquad \text{hmm.Slisodd.Eiher}$$

$$f'''(x) = -\cos x \qquad \text{cosx or - cosx}$$

$$f'''(x) = -\cos x \qquad \text{Slisdivisible by } 4, \text{so is}$$

$$f^{(4)}(x) = \sin x \qquad 4$$

$$\text{So } f^{(5^{1})}(x) = f'''(x) = -\cos x$$

Example 8: A mass on a spring vibrates horizontally on a smooth level surface. Its equation of motion is $x(t) = 8 \sin t$, where t is in seconds and x is in centimeters. $p \delta s i h e x, he the cight$

(a) Find the velocity at time *t*.

x'(+)= 8 cost

(b) Find the position and velocity of the mass at time $t = 2\pi/3$. In what direction is it moving at this time?

Example 9: A ladder 12 feet long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let *x* be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does *x* change with respect to θ when $\theta = \frac{\pi}{2}$.

the wall, now hast does
$$x$$
 (thange will help et to b when $b = \frac{1}{6}$.
 12 0 $5i'n \theta = \frac{x}{12}$
 27 $x = 12 sin \theta$
 $\frac{dx}{d\theta} = \frac{d}{d\theta} (12 sin \theta)$
 $= 12 cos \theta$
 $x'(T'_{6}) = 12 cos T_{6} = 12 \frac{13}{3} = 613 \frac{14}{5}$
 $radius$

UAF Calculus I

3-3 Derivatives of Trigonometric Functinos