Lecture: 3-5 Implicit Differentiation (Part 2)

Example 1: Review. Find $\frac{d y}{d x}$ by implicit differentiation.
$\sin (x+y)-2 x y=3$

Example 2: If $g(x)+x \sin g(x)=3 x^{2}+1$ and $g(1)=0$ find $g^{\prime}(1)$.

Derivatives of Inverse Trigonometric Functions

Implicit differentiation is also used to derive formulas for derivatives of inverse functions.

Example 3: Find the derivatives of the following functions.
(a) $y=\sin ^{-1} x$
(b) $y=\tan ^{-1} x$

Derivatives of Inverse Trigonometric Functions:

- $\frac{d}{d x}\left(\sin ^{-1} x\right)=$ \qquad
- $\frac{d}{d x}\left(\cos ^{-1} x\right)=$ \qquad
- $\frac{d}{d x}\left(\tan ^{-1} x\right)=$

Example 4: Differentiate the following functions.
(a) $y=\cos ^{-1}(3 x+5)$
(b) $y=\arctan 2 x$

Example 5: Differentiate the following functions.
(a) $f(t)=\arcsin (\sqrt{t})$
(b) $y=x \sin ^{-1} x+\sqrt{1-x^{2}}$

