Lecture: 3-6 Derivatives of Logarithmic Functions

Review: Derivatives of Exponential Functions:

- $\frac{d}{d x} e^{x}=$ \qquad - $\frac{d}{d x} a^{x}=$

Example 1: Find a formula for the derivatives of the following functions.
(a) $y=\ln x$
(b) $y=\log _{b} x$

Derivatives of Logarithmic Functions:

- $\frac{d}{d x} \ln x=$ \qquad - $\frac{d}{d x} \log _{b} x=$

Example 2: Find derivatives of the following functions.
(a) $y=\ln \left(4 x^{2}+5\right)$
(b) $y=\ln (\tan x)$

Example 3: Find derivatives of the following functions.
(a) $f(x)=\log _{10} \sqrt{x}$
(b) $g(x)=\sqrt{5+\ln x}$

Example 4: Differentiate the following functions.
(a) $y=\ln |x|$.
(b) $f(x)=\ln |\sec x+\tan x|$

It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative. To do this properly you first must recognize when these rules can be applied and apply them correctly.

Rules and Non-Rules for Logarithms

- $\ln (A B)=$ \qquad
- $\ln (A / B)=$ \qquad
- $\ln \left(A^{r}\right)=$ \qquad
- $\ln (A+B)=$ \qquad
- $\ln (A-B)=$ \qquad
- $(\ln A)^{r}=$ \qquad

Example 5: Differentiate $g(x)=\log _{5}\left(x^{2} \sqrt{x+1}\right)$ by first expanding the expressions using the rules for logarithms.

Example 6: Differentiate $f(x)=\ln \left(\frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{4}-5}}\right)$

Example 7: Differentiate the following functions.
(a) $f(x)=(\ln x)^{5}$
(b) $f(x)=\ln x^{5}$

Logarithmic Differentiation

Finding derivatives of complicated functions involving products, quotients and powers can often be simplified using logarithms. This technique is called logarithmic differentiation.

Example 8: Find the derivative of $y=\frac{x^{7} \sqrt{x^{3}+1}}{(5 x+1)^{4}}$.

