LECTURE: 3-6 DERIVATIVES OF LOGARITHMIC FUNCTIONS

Review: Derivatives of Exponential Functions: • $\frac{d}{dx}e^x =$ ______ • $\frac{d}{dx}a^x =$ ______

Example 1: Find a formula for the derivatives of the following functions.

(a) $y = \ln x$ (b) $y = \log_b x$

Derivatives of Logarithmic Functions: • $\frac{d}{dx} \ln x =$ • $\frac{d}{dx} \log_b x =$

Example 2: Find derivatives of the following functions.

(a) $y = \ln(4x^2 + 5)$ (b) $y = \ln(\tan x)$

Example 3: Find derivatives of the following functions.

(a) $f(x) = \log_{10} \sqrt{x}$ (b) $g(x) = \sqrt{5 + \ln x}$

Example 4: Differentiate the following functions.

(a) $y = \ln |x|$.

(b) $f(x) = \ln |\sec x + \tan x|$

It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative. To do this properly you first must recognize when these rules can be applied and apply them correctly.

Example 5: Differentiate $g(x) = \log_5(x^2\sqrt{x+1})$ by first expanding the expressions using the rules for logarithms.

Example 6: Differentiate $f(x) = \ln\left(\frac{x(x^2+1)^2}{\sqrt{2x^4-5}}\right)$

Example 7: Differentiate the following functions.

(a) $f(x) = (\ln x)^5$ (b) $f(x) = \ln x^5$

Logarithmic Differentiation

Finding derivatives of complicated functions involving products, quotients and powers can often be simplified using logarithms. This technique is called logarithmic differentiation.

Example 8: Find the derivative of $y = \frac{x^7 \sqrt{x^3 + 1}}{(5x + 1)^4}$.