Lecture: 3-6 Derivatives of Logarithmic Functions

Review: Derivatives of Exponential Functions:

- $\frac{d}{d x} e^{x}=e^{\chi}$
$\cdot \frac{d}{d x} a^{x}=a^{\chi}(\ln a)$

Example 1: Find a formula for the derivatives of the following functions.
(a) $y=\ln x \quad \Leftrightarrow \quad e^{y}=x$
(b) $y=\log _{b} x$ $\Leftrightarrow b^{y}=x$ differentiate!

$$
\begin{aligned}
& e^{y} \cdot \frac{d y}{d x}= \\
& \frac{d y}{d x}=\frac{1}{e^{y}} \\
& \frac{d y}{d x}=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& b^{y}(\ln b) \cdot \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{(\ln b) b^{y}} \\
& \frac{d y}{d x}=\frac{1}{(\ln b) x}
\end{aligned}
$$

Derivatives of Logarithmic Functions:

- $\frac{d}{d x} \ln x=\underline{1 / \chi}$
- $\frac{d}{d x} \log _{b} x=\frac{1}{(\ln b) \boldsymbol{x}}$

Example 2: Find derivatives of the following functions.
(a) $y=\ln \left(4 x^{2}+5\right)$

$$
y^{\prime}=\frac{1}{4 x^{2}+5} \cdot \frac{d}{d x}\left(4 x^{2}+5\right)
$$

(b) $y=\ln (\tan x)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\tan x} \cdot \frac{d}{d x}(\tan x) \\
& =\frac{\sec ^{2} x}{\tan x}
\end{aligned}
$$

Example 3: Find derivatives of the following functions.
(a) $f(x)=\log _{10} \sqrt{x}$

$$
f^{\prime}(x)=\frac{1}{(\ln 10) \sqrt{x}} \cdot \frac{d}{d x}(\sqrt{x})
$$

Example 4: Differentiate the following functions.
(a) $y=\ln |x|$.

$$
\begin{aligned}
\begin{aligned}
&(\text { a) } y=\ln |x| \\
& x>0:=\ln x \\
& y^{\prime}=\frac{1}{x} \\
& x<0: y=\ln (-x) \\
& y^{\prime}=\frac{1}{-x} \cdot \frac{d}{d x}(-x) \\
&=\frac{-1}{-x}=\frac{1}{x}
\end{aligned}
\end{aligned}
$$

(b) $g(x)=\sqrt{5+\ln x}$

$$
\begin{aligned}
& (x)=\sqrt{5+\ln x} \\
& S^{\prime}(x)=\frac{1}{2}(5+\ln x)^{-1 / 2} \cdot \frac{d}{d x}(\ln x)
\end{aligned}
$$

$$
=\frac{1}{2 \times \sqrt{5+\ln x}}
$$

$\lambda>0$
(b) $f(x)=\ln |\sec x+\tan x|$

$$
f^{\prime}(x)=\frac{\int^{\prime 2}(x)=\ln \mid \sec x+\tan x}{\sec x+\tan x} \cdot \frac{d}{d x}(\sec x+\tan x)
$$

$$
=\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x}
$$

$$
=\sec x
$$

It is often easier to first use the rules of logarithms to expand a logarithmic expression before taking the derivative. To do this properly you first must recognize when these rules can be applied and apply them correctly.

Rules and Non-Rules for Logarithms

- $\ln (A B)=\ln _{n}(A)+\ln (B)$
- $\ln (A+B)=$ non rule!
- $\ln (A / B)=l n(A)-\ln (B$
- $\ln (A-B)=$ non rule!
- $\ln \left(A^{r}\right)=r \ln (A)$
- $(\ln A)^{r}=$ non rule!.

Example 5: Differentiate $g(x)=\log _{5}\left(x^{2} \sqrt{x+1}\right)$ by first expanding the expressions using the rules for logarithms.

$$
\begin{aligned}
& f(x)=2 \log _{5} x+\frac{1}{2} \log _{5}(x+1) \\
& s^{\prime}(x)=\frac{2}{(\ln 5) x}+\frac{1}{2} \cdot \frac{1}{(\ln 5)(x+1)}=\frac{2}{(\ln 5) x}+\frac{1}{2(\ln 5)(x+1)}
\end{aligned}
$$

Example 6: Differentiate $f(x)=\ln \left(\frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{4}-5}}\right)$

$$
\begin{aligned}
& \text { Example 6: Differentiate } f(x)=\ln \left(\frac{(2)}{\sqrt{2 x^{4}-5}}\right) \\
& f(x)=\ln x+2 \ln \left(x^{2}+1\right)-\frac{1}{2} \ln \left(2 x^{4}-5\right) \\
& f^{\prime}(x)=\frac{1}{x}+\frac{2}{x^{2}+1} \cdot 2 x-\frac{1}{2} \frac{1}{2 x^{4}-5} \cdot\left(8 x^{3}\right) \\
&=\frac{1}{x}+\frac{4 x}{x^{2}+1}-\frac{4 x^{3}}{2 x^{4}-5}
\end{aligned}
$$

Example 7: Differentiate the following functions. power orvle first
(a) $f(x)=(\ln x)^{5}$
(b) $f(x)=\ln x^{5}=5 \ln x$

$$
\begin{aligned}
f^{\prime}(x) & =5(\ln x)^{4} \cdot \frac{d}{d x}(\ln x) \\
& =\frac{5(\ln x)^{4}}{x}
\end{aligned}
$$

Logarithmic Differentiation
MI
$n \pi$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x^{5}} \cdot \frac{d}{d x}\left(x^{5}\right) \\
& =\frac{1}{x^{5}} \cdot 5 x^{4}=\frac{5}{x}
\end{aligned}
$$

Finding derivatives of complicated functions involving products, quotients and powers can often be simplified using logarithms. This technique is called logarithmic differentiation.

Example 8: Find the derivative of $y=\frac{x^{7} \sqrt{x^{3}+1}}{(5 x+1)^{4}}<a g h!$! Take ln of both sides.

$$
\begin{aligned}
\ln y & =\ln \left(\frac{x^{7} \sqrt{x^{3}+1}}{(5 x+1)^{4}}\right)^{(3 x+1)^{4}} \\
\operatorname{Imp}(\ln y & =7 \ln x+\frac{1}{2} \ln \left(x^{3}+1\right)-4 \ln (5 x+1) \\
\text { Diff! } \frac{1}{y} \cdot \frac{d y}{d x} & =\frac{7}{x}+\frac{1}{2} \cdot \frac{1}{x^{3}+1} \cdot 3 x^{2}-\frac{4}{5 x+1} \cdot 5 \\
\frac{d y}{d x} & =\left(\frac{7}{x}+\frac{3 x^{2}}{\partial\left(x^{3}+1\right)}-\frac{20}{5 x+1}\right) \cdot y \\
\frac{d y}{d x} & =\left(\frac{7}{x}+\frac{3 x^{2}}{2\left(x^{3}+1\right)}-\frac{20}{5 x+1}\right) \frac{x^{7} \sqrt{x^{3}+1}}{(5 x+1)^{4}}
\end{aligned}
$$

