Lecture: 3-6 Derivatives of Logarithmic Functions [PART 2]

Note the difference between derivatives of powers of x and exponential (where x shows up in the exponent).

Derivative Rules: Let n and a be constants. (Note, there is no rule when there is a variable in the base and the exponent.) \qquad $n-1$

- $\frac{d}{d x} x^{n}=$
- $\frac{d}{d x} a^{x}=(\ln a) a^{\chi}$

When you have a variable in both the base and the exponent you must use
logarithmic differentiedior to find the derivative of the function.

Example 1: Find the derivatives of the following functions using logarithmic differentiation.

(b) $y=(\ln x)^{\cos x}$

$$
\ln y=\cos x \cdot \ln (\ln x)
$$

$$
\frac{1}{y} \frac{d y}{d x}=-\sin x \cdot \ln (\ln x)+\cos x\left(\frac{1}{\ln x} \cdot \frac{1}{x}\right)
$$

$$
\frac{d y}{d x}=\left(-\sin x \ln (\ln x)+\frac{\cos x}{x \ln x}\right)(\ln x)^{\cos x}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x+\ln x}\left(1+\frac{1}{x}\right) \begin{aligned}
& =\ln (1+\ln 1) \\
& =\ln (1+0)=0
\end{aligned} \\
& m=\frac{1}{1+\ln 1}(1+1 / 1)=\frac{1}{1}(2)=2 \quad(1,0) \\
& y-0=2(x-1) \\
& y=2 x-2
\end{aligned}
$$

Example 3: Let $f(x)=c x+\ln (\sin x)$. For what value of c is $f^{\prime}(\pi / 4)=6$?

$$
\begin{aligned}
& f^{\prime}(x)=c+\frac{1}{\sin x} \cdot(\cos x) \\
& \Rightarrow c+\frac{\cos ^{\pi} / 4}{\sin ^{1 / 4} / 4}=6 \\
& c+\frac{\sqrt{2} / 2}{\sqrt{2 / 2} / 2}=6 \quad c+1=6 \quad c=5 \\
& f(x)=5 x+\ln (\sin x)
\end{aligned}
$$

3-7 Rates of Change in the Natural and Social SCIENCES [A START]

Physics example: A particle moves according to the law of motion $s=f(t)=t^{4}-4 t+1$, where t is measured in seconds and s is measured in meters.
(a) Find the velocity at time t. What is the velocity after 2 seconds?

$$
\begin{aligned}
v(t)=f^{\prime}(t) & =4 t^{3}-4 \\
f^{\prime}(2) & =4(2)^{3}-4=28 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) When is the particle at rest? - velocity is 0 !

$$
4 t^{3}-4=0 \quad 4 t^{3}=4 \quad t^{3}=1 \quad \Rightarrow t=1 \mathrm{sec}
$$

(c) When is the particle moving forward (in the positive direction)?
$v(t)>0$ - test values! Sign chert

on $[1, \infty), v(t)>0$,
So the position is increasing (i.e., moving forward)
(d) Draw a diagram to illustrate the motion of the particle.
(1) Plot start $\quad t=0, s(0)=1$
(2) Plot turning point (s) $t=1, s(1)=1-4+1=-2$
(3) Final direction

$$
t=2, s(2)=16-8+1=9
$$

(e) Find the total distance traveled in the first 4

0-1 seconds: 3 meters
$t=4$, position is $s(4)=4^{4}-4(4)+1 \quad 241$
so $1-4$ seconds, $2+241$ meters
Total: 246 meters

