LECTURE: 3-8 EXPONENTIAL GROWTH AND DECAY

In many natural phenomena, a quantity grows or decays at a rate proportional to their size. Suppose y = f(t)
is the number of individuals in a population at time ¢. Given an unlimited environment, adequate nutrition
and immunity to disease it is reasonable to assume that the rate of growth is proportional to the population.
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Example 1: Show that the equation y = Ce*! is a solution to the differential equation % = ky.

(a) Explain, in words, what it means for y = Ce*? to be a solution of the given differential equation.
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(b) Show that y = Cek! is a solution to the differential equation % = ky.

Theorem: The only solutions of the differential equation dy/dt = ky are exponential functions of the form
y(t) = Ce* where C = y(0)

e Explain why C = y(0).
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e What does the constant £ mean in this equation? What does the sign of % tell you about the growth of your
population?
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Example 1: A bacteria culturel initially contains 10 celll and grows at a rate proportional to its size. After an hour
the population has increased to 400.

(a) Find an expression for the number of bacteria after ¢ hours. -r (o= O) ,’f ( )) = 400

flt)= ce*t
fo)y==_e’
0= C
50 L(t)=10 eLt
£ = 400
Yoo = 10 €
4= e*
K= In 4D

(b) Find the number of bacteria after 3 hours.

F(3)= 10 4p°
:@0) 00O backeria

(c) Find the rate of growth after 3 hours.

FOO=Jg "t 40
F) =10 intp - up”
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(d) When will the population reach 1,000?
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Example 2: Let y = Ce*! be the number of flies at time ¢, where ¢ is measured in days. Suppose there are 100 flies
after the second day and 400 flies after the fourth day. Assuming the growth rate is proportional to the population
size find a model for this population’s growth. When will the population of flies be 10,000?
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Example 3: The half-life of cesium-137 is 30 years. The 1986 explosion at Chernobyl sent about 1000 kg of radioac-

tive cesium-137 into the atmosphere. 2
(a) Find the mass that remains after ¢ Vp;\r; > 50 0 = ’ 00 O €
L¥/3 o _ %0k
m(Lt)= 1000 C’/;> ° 7 =e
mn(h) =20k
mt)= £ eF¢ = Y In('%)
1000 e *© e
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Know t=2%0, m(%5)=500 = 1000 (6
(b) If even 100 kg remains in Chernobyl’s atmosphere, the area is considered unsafe for human habltafgn Deter-
mine when Chernobyl will be safe. V)
00 = looo (V2)*° _ (72
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Example 4: A sample of radioactive tritium-3 decayed to 95% of its original amount after a year.

(a) What is the half-life O-ft t;tlum -3? \V\ LO q b) \V\ LO %}

YW=2C(% )L ") M (0.5 = = n10.9)

t-\3\3 (0.95) ¢ hWnp.45) = W D.5)
o, 0.95¢C = (0. 53 n= 0.5/ p0s

0.95 = (0 &) h~ 12,93

(b) How long would it take the sample to decay to 10% of its original amount?

(0 (0.5) 513 t= 13.51% In(p.1)
In (0. 'S)
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Example 5: Scientists can determine the age of ancient objects by the method of radiocarbon dating. The bombard-
ment of the upper atmosphere by cosmic rays converts nitrogen to a radioactive isotope of carbon, *C, with a half
life of about 5730 years. Vegetation absorbs carbon dioxide through the atmosphere and animal life assimilates
¢ through food chains. When a plant or animal dies, it stops replacing its carbon and the amount of '*C begins
to decrease through radioactive decay. Therefore, the level of radioactivity must also decay exponentially.

A parchment fragment was discovered that had about 74% as much 'C radioactivity as does the plant material

on earth today. Estimate the age of the parchment.
t/ += 5130 n (074
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Newton’s Law of Cooling '
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Example 6: When a cold drink is taken from a regigerator, its temperature is 40° F. After 25 minutes in a 70°F
room its temperature has increased to 52°F.

(a) What is the temperature of the drink after 50 minutes?

ot guie =y close = et =T Ts  pwis workes
Hoive Y= T-70 here ; ylo)= Yo— 70 = 730
Thus )/H:) = —3D @Lt) also oafers= 5 min dring is 2°F

50 y(5L) = Z2-70=-1% ona .. (= M%)t
—1g= 20 ¥ " glb) = "20¢

U = g2k T—720 — ~%0¢

25k = In(%s) @: IO — 2025 WIS f
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(b) When will its temperature reach 66°F? -
65=70-30 e %5 " V)T = 87.684 min |
-5 = —2p e 22 WMLlYNT

v v Me)tE
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25 W (V)
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=t

(c) What happens to the temperature of the drink as ¢ — 0o? Is this expected?

im T(x) = Jin (70 — 390 6385¢)

+ 0
=0 (70 = 20 foezsst)

_ S0 T D To°F or
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(70°F ) < 32 oot room e
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