Lecture Notes: 4-2 The Mean Value Theorem (PART 1)

MOTIVATING EXAMPLES: Draw several examples of graphs of functions such that (i) the domain is $[a, b]$ and (ii) $f(a)=f(b)$. Note you are not required to make sketches that are continuous or differentiable, though you may choose to do so.

QUESTION 1: What is the difference between a conjecture and a Theorem in a mathematics course?

QUESTION 2: State in plain old English (or draw a picture) to explain what it means for the graph of $f(x)$ if you know $f^{\prime}(c)=0$.

QUESTION 3: Based on our examples on the previous page and your knowledge of graphs more broadly, what requirements would be needed to guarantee the existence of an x-value c in the open interval (a, b) such that $f^{\prime}(c)=0$?

ROLLE'S THEOREM: If

then there is a number c in the interval (a, b) such that $f^{\prime}(c)=0$.

QUESTION 4: Now that we see a pattern, can we give an argument for why that pattern should hold? (HINT: What does the Extreme Value Theorem say again??)

EXAMPLE 1: Consider $f(x)=x^{3}-2 x^{2}-4 x+2$ on the interval [-2, 2].

1. Verify that the function $f(x)$ satisfies the hypothesis of Rolle's Theorem on the given interval.
2. Find all numbers c that satisfy the conclusion of Rolle's Theorem.

MOtIVATING EXAMPLES: Draw several examples of graphs of functions such that (i) the domain is [a,b], (ii) $f(x)$ is continuous on $[a, b]$, and (iii) $f(x)$ is differentiable on $[a, b]$. We are not assuming that $f(a)=f(b)$.

QUESTION 5: In each picture above, draw (or in some other way identify) the quantity:

$$
\frac{f(b)-f(a)}{b-a} .
$$

What would this quantity be if Rolle's Theorem applied?

The Mean Value Theorem: If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b), then there is a number c in the interval (a, b) such that
\square
Observation: The Mean Value Theorem is just Rolle's Theorem if you turn your head sideways.

QUESTION 6: Assume that $f(x)$ is continuous and differentiable on the interval $[a, b]$ and assume there exists some x-value d in (a, b) such that $f(d)>f(a)$, can you draw any conclusion about $f^{\prime}(x)$? Why or why not?

THEOREM 5: If $f^{\prime}(x)=0$ for all x in the interval (a, b), then

QUESTION 7: How would you explain why this theorem is true? (Hint: See your answer to Question 6!)

QUESTION 8: If $f(x)$ gives the position of an object as a function of time, what "common sense" idea is the MVT telling us? Theorem 5?

