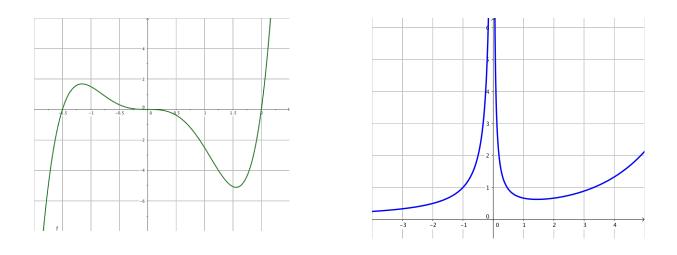
LECTURE NOTES: 4-3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH (PART 2)

DEFINITION: A point *P* on a curve y = f(x) is called an **inflection point** if *f* is continuous there and the curve changes from concave upward to concave downward or vice versa at *P*.

QUESTION 1: Do the following (familiar) graphs have any inflection points?



CONCAVITY TEST & INFLECTION POINTS: Let *f*(*x*) be a function defined on an interval *I*.
a) If ______ (that is: ______) for all *x* in *I*, then the graph of *f* is concave upward on *I*.

b) If _______ (that is: ______) for all *x* in *I*, then the graph of *f* is concave downward on *I*.

PRACTICE PROBLEM 1: Let $f(x) = 2x^3 - 3x^2 - 12x$. Find the intervals of concavity and the inflection points.

QUESTION 2: Homer Simpson once read from the newspaper: "Here's good news! According to this eye-catching article, SAT scores are declining at a slower rate." What does this have to do with first and second derivatives?

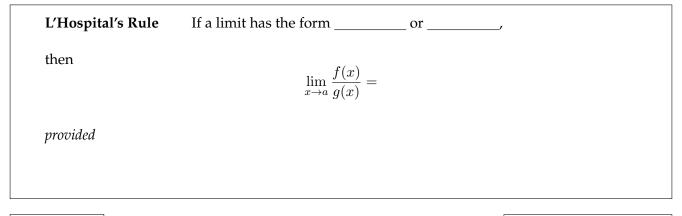
a) If local minimum at <i>c</i> .	and	, then f has a
b) If local maximum at c.	and	, then f has
c) If inconclusive.	and	, then the test i

PRACTICE PROBLEM 2: Let $f(x) = x^4 - 4x^3$. Find critical points, intervals of concavity, inflection points, and local maxima and minima. Use that information to sketch the curve.

LECTURE NOTES: 4-4 INDETERMINATE FORMS AND L'HOSPITAL'S RULE (PART 1)

MOTIVATING EXAMPLES: Evaluate the Chapter 2 limits below, justifying each step:

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$$
 b) $\lim_{x \to 0} \frac{\sin x}{x}$



QUESTION 1: Determine whether or not l'Hospital's Rule applies to the MOTIVATING EXAMPLES (copied below) and if it does, apply it. Do you get the same answer?

a)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$$
 b) $\lim_{x \to 0} \frac{\sin x}{x}$

QUESTION 2: Why does l'Hospital's Rule work?

PRACTICE PROBLEMS: Evaluate the following limits.

1.
$$\lim_{x \to 0} \frac{\tan(5x)}{\sin(3x)}$$
 3. $\lim_{x \to 0} \frac{\cos(4x)}{e^{2x}}$

2.
$$\lim_{u \to \infty} \frac{e^{u/10}}{u^2}$$
 4. $\lim_{x \to 0} \frac{xe^x}{2^x - 1}$

5.
$$\lim_{x \to 1^+} \left(\ln(x^4 - 1) - \ln(x^9 - 1) \right)$$