Lecture Notes: 4-3 How Derivatives Affect the Shape of a Graph

(PART 2)

DEFINITION: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes from concave upward to concave downward or vice versa at P.

QUESTION 1: Do the following (familiar) graphs have any inflection points?

Concavity Test \& Inflection Points: Let $f(x)$ be a function defined on an interval I.
a) If \qquad (that is: \qquad) for all x in I, then the graph of f is concave upward on I.
b) If \qquad (that is: \qquad) for all x in I, then the graph of f is concave downward on I.

Practice Problem 1: Let $f(x)=2 x^{3}-3 x^{2}-12 x$. Find the intervals of concavity and the inflection points.

QUESTION 2: Homer Simpson once read from the newspaper: "Here's good news! According to this eye-catching article, SAT scores are declining at a slower rate." What does this have to do with first and second derivatives?

The Second Derivative Test: Suppose $f^{\prime \prime}$ is continuous near c.
a) If and \qquad , then f has a local minimum at c.
b) If and \qquad , then f has a local maximum at c.
c) If \qquad and \qquad , then the test is inconclusive.

PRACTICE PROBLEM 2: Let $f(x)=x^{4}-4 x^{3}$. Find critical points, intervals of concavity, inflection points, and local maxima and minima. Use that information to sketch the curve.

Lecture Notes: 4-4 Indeterminate Forms and L'Hospital's Rule
 (PART 1)

Motivating Examples: Evaluate the Chapter 2 limits below, justifying each step:
a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}$
b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

L'Hospital's Rule If a limit has the form \qquad or \qquad
then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=
$$

provided

QUESTION 1: Determine whether or not l'Hospital's Rule applies to the MOtivating EXAMPLES (copied below) and if it does, apply it. Do you get the same answer?
a) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-5 x+6}$
b) $\lim _{x \rightarrow 0} \frac{\sin x}{x}$

Practice Problems: Evaluate the following limits.

1. $\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (3 x)}$
2. $\lim _{x \rightarrow 0} \frac{\cos (4 x)}{e^{2 x}}$
3. $\lim _{u \rightarrow \infty} \frac{e^{u / 10}}{u^{2}}$
4. $\lim _{x \rightarrow 0} \frac{x e^{x}}{2^{x}-1}$
5. $\lim _{x \rightarrow 1^{+}}\left(\ln \left(x^{4}-1\right)-\ln \left(x^{9}-1\right)\right)$
