Lecture Notes: 4-8 Newton's Method

Motivating Question: Suppose we wanted to find the x-intercepts of $f(x)=x-2 \sin x$. From the graph (or the Mean Value Theorem) we can see there exists a positive (and negative) solution. How to find it?

DERIVATION OF NEWTON'S METHOD:

1. Write the equation of the line tangent to the curve $y=f(x)$ at the x-value x_{1}. Sketch the tangent line in the "cartoon" of $f(x)$ below.

2. In your picture above, label the x-value where the tangent line intersects the x-axis as x_{2}.
3. Solve for x_{2} using your equation from part (1) above.

Geometric Explanation of Newton's Method:

Formula for Newton's Method:

MODEL PROBLEM: Let $f(x)=x^{3}-5 x$.

1. Factor $f(x)$, find its roots algebraically, and sketch its graph.
2. Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?
3. Using a first guess of $x_{1}=3$, calculate 2 iterations of Newton's method
4. How close is your estimate of the root, x_{3}, to the actual root?
5. How important is the first guess (part 2. above)? In particular, are there any truly bad guesses that won't get to our sought after root?

EXAMPLE 1: Approximate any zero of $f(x)=x-2 \sin x$ using 2 iterations of Newton's Method. Graph $f(x)$ and draw the first iteration.

EXAMPLE 2: Estimate $\sqrt[6]{7}$ correct to 5 decimal places.

