Lecture Notes: 4-9 Antiderivatives

Motivating Ideas:

1. If $s(t)$ give the position of an object at each time t, then $s^{\prime}(t)$ is \qquad and $s^{\prime \prime}(t)$ is \qquad .
2. If $P(t)$ is the number of individuals in a population at each time t, then $P^{\prime}(t)$ is \qquad

Definition: Given a function $f(x)$, any function $F(x)$ such that
is called \qquad .

EXAMPLE: Find three different antiderivatives of $f(x)=x^{2}$.

QUESTION 1: How to any two antiderivatives of $f(x)=x^{2}$ differ?

QUESTION 2: How can you characterize all antiderivatives of $f(x)=x^{2}$ simultanously? Explain what your expression means.

QUESTION 3: Fill in the blank:
Theorem: If F is an anti-derivative of f on an interval I, then the most general anti-derivative of f on I is

QUESTION 4: Do you really believe this Theorem? Here's a check. It's easy to see that $F(x)=x^{2}-\pi$ is an antiderivative of $f(x)=2 x$. (Right?) Apply the Theorem in Question 3 to this choice of F.

QUESTION 5: Describe the family of antiderivatives of $f(x)=x^{2}$ geometrically.

Practice Problems:

1. Minnie Mouse says that $F(x)=5 x^{2 / 3}+x+\sqrt{2}$ is an antiderivative of $f(x)=\frac{10+3 \sqrt[3]{x}}{3 \sqrt[3]{x}}$. Find the most efficient way to determine if she is correct.
2. Fill in the table below. Assume n and a are fixed constants.

Function	Particular Anti-derivative	Function	Particular Anti-derivative
$x^{n}(n \neq-1)$		$\frac{1}{\sqrt{1-x^{2}}}$	
$\cos x$		$\frac{1}{1+x^{2}}$	
$\sin x$		$\frac{1}{x}$	
$\sec ^{2} x$		e^{x}	
$\csc ^{2} x$		a^{x}	
$\sec x \tan x$		$\csc x \cot x$	

3. Assuming $F(x)$ is an antiderivative of $f(x)$ and $G(x)$ is an antiderivative of $g(x)$, fill in the blanks below.
(a) For any constant a, the general antiderivative of $a f(x)$ is \qquad -
(b) The general antiderivative of $f(x)+g(x)$ is \qquad .
4. Find the most general antiderivative of each function below and then check your answer.
(a) $f(x)=x^{20}+4 x^{10}+8$
(b) $f(t)=\frac{5 \sec t \tan t}{3}-4 \sin t-\frac{1}{t^{2}}+e^{2}$
(c) $g(x)=x\left(2 x^{5}+\sqrt{x}\right)+\sqrt{2} x$
(d) $f(t)=\frac{3 x^{7}-\sqrt{x}}{x^{2}}$
(e) $g(x)=8\left(\frac{e^{x}}{5}-\frac{5}{x^{2}+1}\right)$
(f) $s(t)=\frac{9 t^{3}-4 t^{5 / 3}-4}{t}$
5. Given $f^{\prime}(x)=x \sqrt{x}$ and $f(1)=2$, find $f(x)$. Note: The directions are different here. You are not asked to find a family of antiderivatives but a particular antiderivative.
6. Explain geometrically what piece of information you are given in the previous problem that allows you to identify a particular member of the family of antiderivatives.
7. Find (the particular function) $f(x)$ assuming:

- $f^{\prime \prime}(x)=\sqrt[3]{x}$
- $f^{\prime}(8)=1$ and $f(1)=-6$.

8. A particle moves in a straight line and has acceleration given by $a(t)=5 \cos t-2 \sin t$. Its initial velocity is $v(0)=-6 \mathrm{~m} / \mathrm{s}$ and its initial position is $s(0)=2 \mathrm{~m}$. Find its position function $s(t)$.
9. A ball is thrown upward with a speed of $48 \mathrm{ft} / \mathrm{s}$ from the edge of a cliff 432 feet above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground? (Hint: Acceleration due to gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$.)
