LECTURE NOTES: REVIEW OF CHAPTERS 3 & 4

1. A few warm-up derivatives. Simplify your answers.

(a) Given $f(x) = \arcsin(e^{3x})$, find f'(x). (b) Find dy/dx if $\cos(xy) = x^2 - y$.

(c) Find y' if $y = \frac{(2x+1)^3}{\sqrt{4+x^2}}$.

(d) Find g'(x) if $g(x) = (\cos x)^x$.

2. Find the equation of the line tangent to $f(x) = \frac{1+\cos x}{1-\cos x}$ when $x = \pi/2$.

3. A paper cup has the shape of a cone with height 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of $2 \text{ cm}^3/\text{sec}$, how fast is the water level rising when the water is 5 cm deep?

4. Find the linearization of $f(x) = \sqrt{x}$ at a = 4 and use it to estimate $\sqrt{4.1}$.

- 5. (a) What are critical numbers of a function f?
 - (b) How do you find the absolute maximum and minimum of a function *f* on a closed interval? (Assume *f* is continuous on the interval.)
 - (c) Find the critical numbers of $f(x) = \sin x + \cos^2 x$ in $[0, \pi]$.

6. (a) State the Mean Value Theorem and draw a picture to illustrate it.

(b) Determine whether the Mean Value Theorem applies to $f(x) = x(x^2 - x - 2)$ on [-1, 1]. If it can be applied find all numbers that satisfy the conclusion of the Mean Value Theorem.

- 7. Let $f(x) = 2x 2\cos x$ on $[-\pi, 2\pi]$
 - (a) Find the open intervals on which the function is increasing or decreasing.

- (b) Apply the first derivative test to identify all relative extrema. Classify each as a local maxima or local minima.
- (c) Find the open intervals on which the function is concave up or concave down.

- (d) Find the inflection points.
- (e) Sketch the graph.

8. Evaluate the following limits. Show your work.

(a)
$$\lim_{x \to 0} \frac{1 + x - e^x}{\sin x}$$
 (b) $\lim_{x \to 0^+} (1 + 2x)^{1/x}$

9. Find the rectangle of maximum area that can be inscribed inside the region bounded above by $y = 20 - x^2$ and bounded below by the *x*-axis. (Assume the base of the rectangle lies on the *x*-axis.)