LECTURE: 5-1 AREAS AND DISTANCES

Areas - The Big Question: How Might you Find Area Under a Curvy Curve?

Example 1: Divide the interval [0, 1] into n = 4 sub-intervals of equal width. Then, use four rectangles to estimate the area under $y = x^2$ from 0 to 1.

(a) Using left endpoints.

(b) Using right endpoints.

To find the actual area we need to take the number of sub-intervals to ______. To do this we need a general expression for the left or right estimate for any *n*. This process is rather tedious and we will soon learn how we can use Calculus to find area under curves without having to use this long, tedious process.

Example 2: Prove that the area under $y = x^2$ from 0 to 1 is $\frac{1}{3}$.

Upper and Lower Sums: In general, we form **lower** (and **upper**) **sums** by choosing the sample points x_i^* so that $f(x_i^*)$ is the minimum (and maximum) value of f on the *i*th sub-interval.

Example 3: Estimate the area under $f(x) = 2 + x^2$, [-2, 2] with n = 4 using

(a) Upper Sums

(b) Lower Sums

Question: What type of behavior will guarantee that the left sum is an under-estimate and the right sum is an over-estimate?

Example 4: Find an expression for the area under the graph of $f(x) = \sqrt{x}$, $1 \le x \le 16$ as a limit. Do NOT evaluate the limit.

Example 5: Determine a region whose area is equal to the given limit.

(a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left(5 + \frac{2i}{n} \right)^{10}$$
 (b) $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{5}{n} \sin\left(2 + \frac{5i}{n} \right)^{10}$

Example 6:

(a) Use six rectangles to find estimates of each type for the area under the given graph of f from x = 0 to x = 12.

(i) L_6

(ii) *R*₆

(iii) *M*₆

- (b) Is L_6 an underestimate or overestimate of the true area? Is R_6 an underestimate or overestimate of the true area?
- (c) Which of the numbers L_6 , R_6 or M_6 gives the best estimate? Explain.

Distances

Example 7: Oil leaked out of a tank at a rate of r(t) liters per hour. The rate decreased as time passed and values of the rate at 2 hour time intervals are shown in the table. Find lower and upper estimates for the total amount of oil that leaked out.

t (h)	0	2	4	6	8	10
r(t) (L/h)	8.7	7.6	6.8	6.2	5.7	5.3

Example 8: Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30 second time interval. We take speedometer readings every five seconds and then record them in the table below. Estimate the distance traveled by the car using a left sum and a right sum.

Time (s)	0	5	10	15	20	25	30
Velocity (mi/h)	17	21	24	29	32	31	28