Lecture: 5-1 Areas and Distances
Areas - The Big Question: How Might you Find Area Under a Curvy Curve?

(1) divide $[a, b]$ into n pieces (subintervals)
(2) estimate area of eam sub-interval w/a rectangle.
(3) make it better? Make more rectangles!

Example 1: Divide the interval $[0,1]$ into $n=4$ sub-intervals of equal width. Then, use four rectangles to estimate the area under $y=x^{2}$ from 0 to 1 .
(a) Using left endpoints. Width of sub-intervals is $\Delta x=\frac{b-a}{n}=\frac{1-0}{4}=1 / 4$

$$
\begin{aligned}
L_{4} & =\frac{1}{4}(0)+\frac{1}{4} f(1 / 4)+\frac{1}{4} f(1 / 2)+\frac{1}{4} f(3 / 4) \\
& =\frac{1}{4}\left(0^{2}+(1 / 4)^{2}+(1 / 2)^{2}+(3 / 4)^{2}\right) \\
& =\frac{1}{4}\left(\frac{1}{16}+\frac{1}{4} \frac{4}{4}+\frac{9}{16}\right) \\
& =\frac{1}{4} \cdot \frac{14}{16} \\
& =7 / 32 \approx 0.21875
\end{aligned}
$$

(b) Using right endpoints.

$$
\begin{aligned}
R_{4} & =\frac{1}{4} f(1 / 4)+\frac{1}{4} f(1 / 2)+\frac{1}{4} f(3 / 4)+\frac{1}{4} f(1) \\
& =\frac{1}{4}\left((1 / 4)^{2}+(1 / 2)^{2}+(3 / 4)^{2}+1^{2}\right) \\
& =\frac{1}{4}\left(1 / 16+1 / 4 \frac{4}{4}+9 / 16+\frac{1}{1} \frac{16}{16}\right) \\
& =\frac{1}{4}\left(\frac{30}{16}\right) \\
& =15 / 32 \approx 0.46875
\end{aligned}
$$

To find the actual area we need to take the number of sub-intervals to infinity. To do this we need a general expression for the left or right estimate for any n. This process is rather tedious and we will soon learn how we can use Calculus to find area under curves without having to use this long, tedious process.
Example 2: Prove that the area under $y=x^{2}$ from 0 to 1 is $\frac{1}{3}$.

$=\frac{2 n^{2}+3 n+1}{6 n^{2}} \quad$ this gives the right sum
To get the exact area we take n (\# of sub-intervals) to ∞.

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} R_{n} \\
&=\lim _{n \rightarrow N} \frac{\left(2 n^{2}+3 n+1\right) 1 / n^{2}}{\left(6 n^{2}\right) 1 / n^{2}} \\
&=\lim _{n \rightarrow \infty} \frac{\left(2+3 / n+1 / n^{2}\right)}{6} \\
&=1 / 3<\text { area under } y=x^{2} \text { on }[0,1] \\
& \text { is exactly } 1 / 3 .
\end{aligned}
$$

Upper and Lower Sums: In general, we form lower (and upper) sums by choosing the sample points x_{i}^{*} so that $f\left(x_{i}^{*}\right)$ is the minimum (and maximum) value of f on the i th sub-interval.

Example 3: Estimate the area under $f(x)=2+x^{2},[-2,2]$ with $n=4$ using

$$
\Delta x=\frac{2-(-2)}{4}=1
$$

(a) Upper Sums

$$
\begin{aligned}
V_{4} & =1(f(-2)+f(-1)+f(1)+f(2)) \\
& =(6+3+3+6) \\
& =18
\end{aligned}
$$

(b) Lower Sums

$$
\text { Laver }=1(f(-1)+f(0)+f(0)+f(1))
$$

$$
=3+2+2+3
$$

$$
=10
$$

Question: What type of behavior will guarantee that the left sum is an under-estimate and the right sum is an over-estimate? increase/decrease? concave up/ concave down?

If f is increasing L_{n} is under-est, R_{n} is over-est If f is decreasing L_{n} is over-est, f_{n} is under -est

Example 4: Find an expression for the area under the graph of $f(x)=\sqrt{x}, 1 \leq x \leq 16$ as a limit. Do NOT evaluate the limit.

$$
\Delta x=\frac{16-1}{n}=\frac{15}{n} \quad R_{n}=\frac{15}{n} \cdot\left(\sqrt{1+1 \cdot \frac{15}{n}}+\sqrt{1+2 \cdot \frac{15}{n}}+\sqrt{1+3 \cdot \frac{15}{n}}+\cdots \sqrt{1+n \cdot 15}\right)
$$

Example 5: Determine a region whose area is equal to the given limit.
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{10}$ starting point.
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{5}{n} \sin \left(2+\frac{5 i}{n}\right)$

This is the area under
This is the area under $f(x)=x^{10}$ on $[5,7]$.

$$
f(x)=\sin x \text { on }[2,7]
$$

Example 6:
(a) Use six rectangles to find estimates of each type for the area under the given graph of f from $x=0$ to $x=12$.
(i) $L_{6} \approx 2(9+8.8+8.2+7.2+6+4)$

$$
=86.4
$$

(ii)

$$
\text { (ii) } \begin{aligned}
R_{6} & \approx 2(8.8+8.2+7.2+6+4+1) \\
& =70.4) \\
\text { (iii) } M_{6} & \approx 2(8.9+8.5+7.7+6.5+5+3) \\
& =79.2)
\end{aligned}
$$

(b) Is L_{6} an underestimate or overestimate of the true area? Is R_{6} an underestimate or overestimate of the true area?
L_{6} is an overestimate
R_{6} is an underestimate
(c) Which of the numbers L_{6}, R_{6} or M_{6} gives the best estimate? Explain.
M_{6} appears to be best as it's
over-estimates seem to cancel out w/ under estimates.

Distances
If velocity is constant dist $=$ vel * time

Example 7: Oil leaked out of a tank at a rate of $r(t)$ liters per hour. The rate decreased as time passed and values of the rate at 2 hour time intervals are shown in the table. Find lower and upper estimates for the total amount of oil that leaked out.

$r_{p_{p}}(t)$ units $L / h r \quad$| $t(h)$ | 0 | 2 | 4 | 6 | 8 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $r(t)(\mathrm{L} / \mathrm{h})$ | 8.7 | 7.6 | 6.8 | 6.2 | 5.7 | 5.3 |

$$
\left\{\begin{array}{l}
\text { upper est is } L_{5} \\
L_{5}=2(8.7+7.6+6.8+6.2+5.7) \\
=70 \mathrm{~L}
\end{array}\right.
$$

A has unit L/nr $h r=$ Liters'.
lower est. is R_{5}

$$
\left\{\begin{array}{l}
R_{5}=2(7.6+6.8+6.2+5.7+5.3) \\
=63.2 \mathrm{~L}
\end{array}\right.
$$

Example 8: Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30 second time interval. We take speedometer readings every five seconds and then record them in the table below.

$$
\begin{aligned}
& \text { Estimate the distance traveled by the car using a left sum and a right sum. } \\
& \frac{1 \mathrm{mi}}{\mathrm{hr}} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \cdot \frac{1 \mathrm{lmin}}{60 \mathrm{sec}} \\
& 250+14 \\
& \begin{array}{l}
=\frac{5280}{3600}=\frac{528}{360}=\frac{264}{180}=\frac{132}{90}=\frac{66}{45} \lambda * \\
L_{6}=5(24.933+30.8+35.2+42.533+46.933+45.467)
\end{array} \\
& =1.129 .33 \mathrm{ft} \\
& R_{6}=5(30.8+35.2+42.533+46.933+45.467+41.067) \\
& =1210 \mathrm{ft}
\end{aligned}
$$

