LECTURE: 5-2 THE DEFINITE INTEGRAL

Example 1: Estimate the area under $f(x) = x^2 - 2x$ on [0, 4] with n = 8 using the left Riemann sum.

Some helpful sums:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} ca_{i} = c \sum_{i=1}^{n} a_{i}$$

$$\sum_{i=1}^{n} (a_{i} + b_{i}) = \sum_{i=1}^{n} a_{i} + \sum_{i=1}^{n} b_{i}$$

Example 2: Find the area under $f(x) = x^2 - 2x$ on [0, 4] exactly.

Example 3: Use the midpoint rule with n = 5 to approximate the area under $f(x) = \frac{1}{x}$ on [1,2].

Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0(a), x_1, x_2, \dots, x_n(b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \dots, x_n^*$ be **sample points** in these subintervals, so x_i^* lies in the *i*th subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f from a to b is

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*})\Delta x$$

Provided this limit exists and gives the same value or all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

Theorem If *f* is continuous on [a, b], or if *f* has only a finite number of jump discontinuities, then *f* is integrable on [a, b]; that is, the definite integral $\int_a^b f(x) dx$ exists.

The thing to remember is that a definite integral represents the *signed* area under a curve. If a curve is above the *x*-axis that area is ________. Some definite integrals can be found by graphing the curve and using the areas of known geometric shapes to then find the value of the definite integral.

Example 4: Evaluate the following integrals by interpreting each in terms of areas.

Example 5: The graph of *f* is shown. Evaluate each integral by interpreting it in terms of areas.

(a) $\int_{2}^{5} f(x) dx$

(b)
$$\int_5^9 f(x) dx$$

(c)
$$\int_3^7 f(x) dx$$

Properties of the Definite Integral:

1.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

4. $\int_{a}^{b} cf(x)dx = c\int_{a}^{b} f(x)dx$

2. $\int_{a}^{a} f(x)dx = 0$ 5. $\int_{a}^{b} [f(x) \pm g(x)]dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$

3. $\int_{a}^{b} c dx = c(b-a)$

UAF Calculus I

Example 6: Using the fact that $\int_0^1 x^2 dx = \frac{1}{3}$, evaluate the following using the properties of integrals.

(a)
$$\int_{1}^{1} t^{2} dt$$
 (b) $\int_{0}^{1} (4+3x^{2}) dx$.

Example 7: If it is known that
$$\int_{0}^{10} f(x) dx = 17$$
 and $\int_{0}^{8} f(x) dx = 12$, find $\int_{8}^{10} f(x) dx$.

Example 8: Evaluate
$$\int_{3}^{3} x \sin x dx$$
.

Comparison Properties of the Integral

Example 9: Use the final property given above to estimate the value of the integral $\int_0^1 x^4 dx$.