
LECTURE: 5-3 THE FUNDAMENTAL THEOREM OF CALCULUS
(PART 1)

Example 1: If f is the function whose graph is shown and g(x) =

R
x

0 f(t)dt, find the values of g(0), g(1), g(2), g(3),
g(4) and g(5). Then, sketch a rough graph of g.

The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], the function g defined by

g(x) =

Z
x

a

f(t)dt a  x  b

is continuous on [a, b] and differentiable on (a, b) and g

0
(x) = f(x).
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Example 2: The Fresnel function S(x) =

Z
x

0
sin(⇡t

2
/2)dt first appeared in Fresnel’s theory of the diffraction of

light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.

Example 3: Find the derivative of the following functions.

(a) g(x) =

Z
x

4

1
sec tdt

(b) g(x) =

Z 2

2x+1

p
tdt

Example 4: Find the derivative of g(x) =
Z

x

2

tan x

1p
2 + t

4
dt
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The Fundamental Theorem of Calculus (Part 2) If f is continuous on [a, b], then
Z

b

a

f(x)dx = F (b)� F (a)

where F is any anti derivative of f , that is, is a function such that F 0
= f

Example 5: Evaluate the following integrals.

a)
Z 1

0
x

2
dx

b)
Z 4

0
(1 + 3y � y

2
)dy
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Let glx ) = taxflx) dx .

We Know g.
'

4) =fCD j that is g is

the anti - derivative of f
.

If F is any other anti derivative we know F t g

differ by a constant : FCX )=g(×) tc for a < × < b

Now : F ( b ) - Fla ) = g (b) + C - ( g (a) + ( )
= gcb ) - gca )

= fabfct ) at - faaftttdt
= fabfctsdt .

= ztx3/
.
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To compute integrals effectively you must have your basic anti-differentiation formulas down. You should know
that anti-derivatives to the following functions. Note, I’m going to use the

R
symbol to mean “find the anti-

derivative” of the function right after the symbol.

Anti-Derivatives of Common Functions:

•
Z

x

n

dx =

•
Z

sinxdx =

•
Z

cosxdx =

•
Z

sec

2
xdx =

•
Z

secx tanxdx =

•
Z

csc

2
xdx =

•
Z

cscx cotxdx =

•
Z

e

x

dx =

•
Z

a

x

dx =

•
Z

1

1 + x

2
dx =

•
Z

1p
1� x

2
dx =

•
Z

1

x

du =

Example 6: Evaluate the following integrals.

(a)
Z 5

2

3

x

dx

(b)
Z

⇡/2

0
cosxdx

Example 7: Evaluate the following integrals.

(a)
Z 8

1

3
p
xdx

(b)
Z

⇡/2

⇡/6
cscx cotxdx

(c)
Z 1

0

9

1 + x

2
dx
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Example 8: We do not have any product or quotient rules for anti-differentiation. To evaluate an integral that is
expressed as a product or quotient you must try to manipulate the integrand (the stuff inside the

R
sign) to look

like something you know how to anti-differentiate. The following integrals are examples of this. Evaluate the
following integrals.

(a)
Z 3

1

x

3
+ 3x

6

x

4
dx

(b)
Z 1

0
x(3 +

p
x)dx

Example 9: Evaluate the following integrals.

(a)
Z 2

0
(5

x

+ x

5
)dx

(b)
Z p

2/2

1/2

1p
1� x

2
dx

Example 10: What is wrong with the following calculation?

Z 3

�1

1

x

2
dx =

x

�1

�1

�3

�1

= �1

3

� 1 = �4

3
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The function fcx ) = 11×2 is not

continuous on G , 3 ] ,
and the FTC #Z

does not apply .


