Lecture: 5-3 The Fundamental Theorem of Calculus
(PART 1)
Example 1: If f is the function whose graph is shown and $g(x)=\int_{0}^{x} f(t) d t$, find the values of $g(0), g(1), g(2), g(3)$, $g(4)$ and $g(5)$. Then, sketch a rough graph of g.

$$
\begin{aligned}
& g(0)=\int_{0}^{0} f(t) d t=0 \\
& g(1)=\int_{0}^{1} f(t) d t=\frac{1}{2}(1)(2)=1 \\
& g(2)=\int_{0}^{2} f(t) d t=1+2=3 \\
& g(3)=\int_{0}^{3} f(t) d t \approx 3+1.5=4.5 \\
& g(4)=S_{0}^{4} f(t) d t=4.5-1.5=3 \\
& g(5)=\int_{0}^{5} f(t) d t \approx 3-1.5=1.5
\end{aligned}
$$

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.
(1) def of a derivative:

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{n \rightarrow 0} \frac{g(x+n)-g(x)}{n} \\
& =\lim _{n \rightarrow 0} \frac{1}{n}\left(\int_{a}^{x+n} f(t) d t-\int_{a}^{x} \underline{f(t)} d t\right) \\
& =\lim _{n \rightarrow 0} \frac{1}{n} \int_{x}^{x+h} f(t) d t
\end{aligned}
$$

(2) Since f is continuous on $[a, b]$, it is cts on $[x, x+h]$ by Extreme value $T h m$, there are u, v in $(x, x+h)$ such that $f(u)=m$ and $f(V)=M$

$$
\begin{aligned}
& \text { and } \rightarrow(u)=M \\
& \text { and } m h \\
& f(u) \leqslant \frac{1}{h} \int_{x}^{x+h} f(t) d t \leqslant M h \\
& x(t) d t \leqslant f(v)
\end{aligned}
$$

Since $\lim _{h \rightarrow 0} f(u)=f(x) \quad \lim _{h \rightarrow 0} f(v)=f(x)$ Thus $g^{\prime}(x) \rightarrow{ }^{1} f(x)$

Example 2: The Fresnel function $S(x)=\int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t$ first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.

$$
\begin{aligned}
S^{\prime}(x) & =\frac{d}{d x} \int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t \\
& =\sin \left(\pi x^{2} / 2\right)
\end{aligned}
$$

Example 3: Find the derivative of the following functions.

$$
\begin{array}{rlrl}
\text { (a) } \begin{aligned}
g(x) & =\int_{1}^{x^{4}} \sec t d t
\end{aligned} & \text { (b) } g(x)=\int_{2 x+1}^{2} \sqrt{t} d t=-\int_{2}^{2 x+1} \sqrt{t} d t \\
& =\sec \left(x^{4}\right) \cdot \frac{d}{d x} x^{4} & \int_{1}^{x^{4}} \sec t d t & g^{?}(x)=\frac{d}{d x}\left(-\int_{2}^{2 x+1} \sqrt{t} d t\right) \\
& =4 x^{3} \sec \left(x^{4}\right) & & =-\sqrt{2 x+1} \cdot \frac{d}{d x}(2 x+1)
\end{array}
$$

Example 4: Find the derivative of $g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t$

$$
\begin{aligned}
g(x) & =\int_{\tan x}^{a} \frac{1}{\sqrt{2+t^{4}}} d t+\int_{a}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t \\
& =-\int_{a}^{\tan x} \frac{1}{\sqrt{2+t^{4}}} d t+\int_{a}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t \\
g^{\prime}(x) & =\frac{d}{d x}\left(-\int_{a}^{\tan x} \frac{1}{\sqrt{2+t^{4}}} d t\right)+\frac{d}{d x} \int_{a}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t \\
& =-\frac{1}{\sqrt{2+\tan ^{4} x}} \frac{d}{d x} \tan x+\frac{1}{\sqrt{2+\left(x^{2}\right)^{4}}} \frac{d}{d x} x^{2} \\
& =-\frac{2 x}{\sqrt{2+\sec ^{2} x}}+\frac{2 x}{\sqrt{2+x^{8}}}
\end{aligned}
$$

The Fundamental Theorem of Calculus (Part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any anti derivative of f, that is, is a function such that $F^{\prime}=f$
Let $g(x)=\int_{a}^{x} f(x) d x$. We know $g^{\prime}(x)=f(x)$; that is g is the anti-derivative of f.
If F is any other antiderivative we know $F+g$ differ by a constant: $F(x)=g(x)+c$ for $a<x<b$

Now: $\quad F(b)-F(a)=g(b)+c-(g(a)+c)$

$$
\begin{aligned}
& =g(b)-g(a) \\
& =\int_{a}^{b} f(t) d t-\int_{a}^{a} f(t) d t \\
& =\int_{a}^{b} f(t) d t
\end{aligned}
$$

Example 5: Evaluate the following integrals.

$$
\begin{array}{ll}
\text { a) } \begin{aligned}
& \int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1} \text { b) } \int_{0}^{4}\left(1+3 y-y^{2}\right) d y=\left.\left(y-\frac{3}{2} y^{2}-\frac{1}{3} y^{3}\right)\right|_{0} ^{4} \\
&=\frac{1}{3}(1)^{3}-\frac{1}{3}(0)^{3} \\
&=\left(4-\frac{3}{2}(16)-\frac{1}{3}(64)\right)-(0) \\
&==4-24-\frac{64}{3} \\
&=-20\left(\frac{3}{3}\right)-\frac{64}{3} \\
&=-\frac{124}{3}
\end{aligned}
\end{array}
$$

To compute integrals effectively you must have your basic anti-differentiation formulas down. You should know that anti-derivatives to the following functions. Note, I'm going to use the \int symbol to mean "find the antiderivative" of the function right after the symbol.

Anti-Derivatives of Common Functions:

- $\int x^{n} d x=\frac{\mathrm{X}^{n+1} /(n+1)}{}$
- $\int e^{x} d x=\frac{e^{\boldsymbol{X}}}{\boldsymbol{a}^{\boldsymbol{X}}}$
- $\int \sin x d x=-\frac{\cos x}{}$
- $\int \cos x d x=\frac{\sin \mathbf{X}}{}$
- $\int \sec ^{2} x d x=\frac{\tan X}{}$
- $\int \sec x \tan x d x=\frac{\sec X}{}$
- $\int \csc ^{2} x d x=\frac{-\cot \boldsymbol{x}}{}$
- $\int \csc x \cot x d x=-\quad$ CSC \boldsymbol{X}

Example 6: Evaluate the following integrals.
(a) $\int_{2}^{5} \frac{3}{x} d x=\left.3 \ln |x|\right|_{2} ^{5}$
(b) $\int_{0}^{\pi / 2} \cos x d x=\left.\sin x\right|_{0} ^{\pi / 2}$

$$
\begin{aligned}
& =3 \ln 5-3 \ln 2 \\
& =3(\ln 5-\ln 2) \\
& =3 \ln \left(\frac{5}{2}\right)
\end{aligned}
$$

Example 7: Evaluate the following integrals.
(a)

$$
\begin{aligned}
& \int_{1}^{8} \sqrt[3]{x} d x=\int_{1}^{8} x^{1 / 3} d x \\
& =\left.\frac{3}{4} x^{4 / 3}\right|_{1} ^{8} \\
& =\frac{3}{4}\left(8^{4 / 3}-1^{4 / 3}\right) \\
& =\frac{3}{4}\left(\sqrt[3]{8}^{4}-1\right) \\
& =\frac{3}{4}(16-1) \\
& =45 / 4
\end{aligned}
$$

(b) $\int_{\pi / 6}^{\pi / 2} \csc x \cot x d x$

$$
=-\left.\csc x\right|_{\pi / 6} ^{\pi / 2}
$$

$$
=\frac{-1}{\sin \pi / 2}+\frac{1}{\sin \pi / 6}
$$

$$
=-1+1 /(1 / 2)
$$

$$
=-1+2
$$

$$
=1
$$

(c) $\int_{0}^{1} \frac{9}{1+x^{2}} d x=\left.9 \tan ^{-1} \mathrm{X}\right|_{0} ^{1}$

Example 8: We do not have any product or quotient rules for anti-differentiation. To evaluate an integral that is expressed as a product or quotient you must try to manipulate the integrand (the stuff inside the \int sign) to look like something you know how to anti-differentiate. The following integrals are examples of this. Evaluate the following integrals.

$$
\text { (a) } \begin{aligned}
\int_{1}^{3} \frac{x^{3}+3 x^{6}}{x^{4}} d x & =\int_{1}^{3} \frac{x^{3}}{x^{4}}+\frac{3 x^{6}}{x^{4}} d x \\
& =\int_{1}^{3}\left(\frac{1}{x}+3 x^{2}\right) d x \\
& \left.=\ln |x|+x^{3}\right)\left.\right|_{1} ^{3} \\
& =\ln 3+27-(\ln \mid+1) \\
& =\ln 3+26
\end{aligned}
$$

Example 9: Evaluate the following integrals.

$$
\text { (b) } \begin{aligned}
\int_{0}^{1} x(3+\sqrt{x}) d x & =\int_{0}^{1}\left(3 x+x \cdot x^{1 / 2}\right) d x \\
& =\int_{0}^{1}\left(3 x+x^{3 / 2}\right) d x \\
& =\left.\left(\frac{3}{2} x^{2}+\frac{2}{5} x^{5 / 2}\right)\right|_{0} ^{1} \\
& =\frac{3}{2} \frac{5}{5}+\frac{2}{5} \frac{2}{2} \\
& =\frac{15}{10}+\frac{4}{10}=19 / 10
\end{aligned}
$$

$$
\text { (a) } \begin{aligned}
& \int_{0}^{2}\left(5^{x}+x^{5}\right) d x=\left.\left(\frac{5^{x}}{\ln 5}+\frac{x^{6}}{6}\right)\right|_{0} ^{2} \\
& =\frac{5^{2}}{\ln 5}+\frac{2^{6}}{6}-\left(\frac{5^{0}}{\ln 5}+0\right) \\
& =\frac{25}{\ln 5}-\frac{64}{6}-\frac{1}{\ln 5} \\
& =
\end{aligned}
$$

$$
\text { (b) } \int_{1 / 2}^{\sqrt{2} / 2} \frac{1}{\sqrt{1-x^{2}}} d x=\left.\sin ^{-1} x\right|_{1 / 2} ^{\sqrt{2} / 2}
$$

$$
\begin{aligned}
& =\sin ^{-1}(\sqrt{2} / 2)-\sin ^{-1}(1 / 2) \\
& =\frac{3 \pi}{3} / 4-\pi / \frac{2}{62} \\
& =\frac{3 \pi}{12}-\frac{2 \pi}{12} \\
& =\pi / 12
\end{aligned}
$$

Example 10: What is wrong with the following calculation?

$$
\left.\int_{-1}^{3} \frac{1}{x^{2}} d x=\frac{x^{-1}}{-1}\right]_{-1}^{3}=-\frac{1}{3}-1=-\frac{4}{3}
$$

The function $f(x)=1 / x^{2}$ is not continuous on $[-1,3]$, and the FTC $\# 2$ does not apply.

