Lecture: 5-4 Indefinite Integrals and the Net Change THEOREM

Question: What does it mean to say $F(x)$ is an anti-derivative of $f(x)$? In other words, how would you check that $\int f(x) d x=F(x)$?

Example 1: Verify by differentiation that $\int x \cos x d x=x \sin x+\cos x+C$ is correct.

Indefinite Integrals

$$
\int f(x) d x=F(x) \quad \text { means }
$$

All the indefinite integrals you (should) already know:

- $\int x^{n} d x=$
- $\int \csc x \cot x=$
- $\int \sin x d x=$
- $\int \frac{1}{x} d x$
- $\int \cos x d x=$
- $\int e^{x} d x$
- $\int \sec ^{2} x d x=$
- $\int a^{x} d x$
- $\int \csc ^{2} x d x=$
- $\int \frac{1}{\sqrt{1-x^{2}}} d x$
- $\int \sec x \tan x=$
- $\int \frac{1}{1+x^{2}} d x$

Example 2: Find the general (what does "general" mean here?) indefinite integrals:
(a) $\int\left(10 x^{4}-2 \sec ^{2} x+\pi\right) d x$
(b) $\int(x+1)\left(1+2 x^{4}\right) d x$

Example 3: Find the general indefinite integral:
(a) $\int \frac{\cos x}{1-\cos ^{2} x} d x$
(b) $\int\left(x^{2}+2^{x}+1\right) d x$

Example 4: Find the following indefinite integrals.
a) $\int\left(\frac{3-x}{x}\right)^{2} d x$
b) $\int\left(\frac{x}{7}-\frac{7}{x}\right) d x$

Example 5: Evaluate the following integrals. Why is the $+C$ unnecessary here?
(a) $\int_{0}^{9} \sqrt{2 x} d x$
(b) $\int_{0}^{1} x\left(\sqrt[4]{x^{5}}+\sqrt[5]{x}\right) d x$

Example 6: Evaluate the following integrals.
(a) $\int_{1}^{9} \frac{2 t^{2}+t^{2} \sqrt{t}-1}{t^{2}} d t$
(b) $\int_{\pi / 4}^{\pi / 2} \frac{1+\sin ^{2} \theta}{\sin ^{2} \theta} d \theta$

The Net Change Theorem

The integral of a rate of change is the net change:

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Examples of Physical Situations

- If oil leaks from a tank at a rate of $r(t)$ gallons per minute at time t, what does $\int_{60}^{180} r(t) d t$ represent?
- A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{15} n^{\prime}(t) d t$ represent?
- If $w^{\prime}(t)$ is rate of growth of a child in pounds per year, what does $\int_{0}^{5} w^{\prime}(t) d t$ represent?
- If the units for x are feet and $a(x)$ are pounds per foot what are the units for the following?
(a) $\frac{d a}{d x}$
(b) $\int_{2}^{8} a(x) d x$

Example 7: The water flows from the bottom of a storage tank at a rate of $r(t)=500-2 t$ gallons per minute for $0 \leq t \leq 250$. Find the total amount of water that flows from the tank during the first hour.

Example 8: A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t$ (measured in meters per second).
(a) Find the displacement of the particle during the time period $1 \leq t \leq 4$.
(b) Find the distance traveled during this time period.

