Lecture: 5-5 The Substitution Rule (Part 1)

Example 1: How would we factor $x^{4}-5 x^{2}+6$ and how might it relate to finding $\int 2 x \sqrt{1+x^{2}} d x$?

The Substitution Rule If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Note, the substitution rule is basically undoing the \qquad rule.

Example 2: Evaluate $\int x^{3} \cos \left(x^{4}+2\right) d x$ two different ways:
(a) solve for $d x$.
(b) solve for $x^{3} d x$.

The trickiest thing about subsitution is deciding what to substitute. As substiution is (usually) undoing the chain rule you chould let your u be the inside function. Choose u to be the stuff inside of a power, root sign, denominator, or trigonometric function. When you are choosing your u the derivative of u should appear elsewhere in the integrand up to a constant multiple. The only way to get better is a lot of practice!
Once you make your subsitution the integral usually simplifies considerably. If your original variable does not completely disappear when making the subsitution you either (a) chose a subsitution that doesn't work or (b) made a mistake. At this stage you can try something different, or start your original substitution again.

Example 3: Evaluate the following indefinite integrals.
(a) $\int \sqrt{3 x+2} d x$
(b) $\int \cos ^{4} x \sin x d x$

Example 4: Evaluate the following indefinite integrals.
(a) $\int \frac{\sec ^{2} x}{\tan ^{2} x} d x$
(b) $\int \frac{x}{\sqrt{1-x^{4}}} d x$

Example 5: Evaluate the following indefinite integrals.
(a) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
(b) $\int \frac{\arctan x}{x^{2}+1} d x$

Example 6: Evaluate the following indefinite integrals.
(a) $\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta$
(b) $\int \tan x d x$

Example 7: Evaluate the following indefinite integrals.
(a) $\int(1+\tan x)^{5} \sec ^{2} x d x$
(b) $\int \frac{\cos (\pi / x)}{x^{2}} d x$

Example 8: Evaluate $\int \frac{5+x}{1+x^{2}} d x$.

Sometimes when you do substitution you also end up solving for your variable in the substitution. For example: Example 9: Evaluate $\int x^{5} \sqrt{x^{3}+1} d x$.

Example 10: Evaluate $\int x \sqrt{x+2} d x$

Definite Integrals

The Substitution Rule for Definite Integrals: If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Example 11: Evaluate $\int_{0}^{\pi / 2} \sin ^{3} x \cos x d x$ two ways:
a) going back to x^{\prime} s
b) using substitution

