
LECTURE: 5-5 THE SUBSTITUTION RULE (PART 1)

Example 1: How would we factor x4 � 5x2 + 6 and how might it relate to finding
Z

2x
p

1 + x2 dx?

The Substitution Rule If u = g(x) is a differentiable function whose range is an interval I and f is
continuous on I then

Z
f(g(x))g0(x) dx =

Z
f(u)du

Note, the substitution rule is basically undoing the rule.

Example 2: Evaluate
Z

x3 cos(x4 + 2) dx two different ways:

(a) solve for dx. (b) solve for x3 dx.
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The trickiest thing about subsitution is deciding what to substitute. As substiution is (usually) undoing the chain
rule you chould let your u be the inside function. Choose u to be the stuff inside of a power, root sign, denominator,
or trigonometric function. When you are choosing your u the derivative of u should appear elsewhere in the
integrand up to a constant multiple. The only way to get better is a lot of practice!
Once you make your subsitution the integral usually simplifies considerably. If your original variable does not
completely disappear when making the subsitution you either (a) chose a subsitution that doesn’t work or (b)
made a mistake. At this stage you can try something different, or start your original substitution again.

Example 3: Evaluate the following indefinite integrals.

(a)
Z p

3x+ 2 dx (b)
R
cos4 x sinx dx

Example 4: Evaluate the following indefinite integrals.

(a)
Z

sec2 x

tan2 x
dx (b)

Z
xp

1� x4
dx

Example 5: Evaluate the following indefinite integrals.

(a)
Z

e
p
x

p
x
dx (b)

Z
arctanx

x2 + 1
dx
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Example 6: Evaluate the following indefinite integrals.

(a)
Z

cos ✓

sin2 ✓
d✓ (b)

Z
tanx dx

Example 7: Evaluate the following indefinite integrals.

(a)
Z

(1 + tanx)5 sec2 x dx (b)
Z

cos(⇡/x)

x2
dx

Example 8: Evaluate
Z

5 + x

1 + x2
dx.
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Sometimes when you do substitution you also end up solving for your variable in the substitution. For example:

Example 9: Evaluate
Z

x5
p
x3 + 1 dx.

Example 10: Evaluate
Z

x
p
x+ 2 dx

Definite Integrals

The Substitution Rule for Definite Integrals: If g0 is continuous on [a, b] and f is continuous on the range of
u = g(x), then Z b

a
f(g(x))g0(x) dx =

Z g(b)

g(a)
f(u) du

Example 11: Evaluate
Z ⇡/2

0
sin3 x cosx dx two ways:

a) going back to x’s b) using substitution
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