LECTURE: 5-5 THE SUBSTITUTION RULE (PART 1)

Example 1: How would we factor $x^4 - 5x^2 + 6$ and	I how might it relate to finding $\int 2x\sqrt{1+x^2} dx$?
$v=\chi^2$ v^2-Sv+6	$ \begin{pmatrix} v = 1 + x^{2} \\ dv \\ dv \\ \end{pmatrix} = \begin{cases} 2 \times \sqrt{1 + x^{2}} \\ dx \\ \end{pmatrix} $
= (v - 2)(v - 5)	dx = 2x = $\int \sqrt{u} du$
$=(\times - f(\times - f))$	$du = dx dx = \frac{2}{3}u^{3/3} + C$
	$\left(= \frac{2}{3} \left(1 + x^{2} \right)^{3} + C \right)$
The Substitution Rule If $u = g(x)$ is a differ contin	rentiable function whose range is an interval I and f is nuous on I then
$\int f(g(x))$	$g'(x) dx = \int f(u) du$
Note, the substitution rule is ba	asically undoing the <u>chain</u> rule.
50 U=g(x)	
$\frac{du}{dx} = \hat{g}(x) =)$	dv = g(x)dx
Example 2: Evaluate $\int x^3 \cos(x^4 + 2) dx$ two different	ent ways:
(a) solve for dx . $u = \chi^{4} + 2 = \int \chi^{3} \cos(u) \frac{du}{4x^{3}}$	(b) solve for $x^3 dx$. $u = x^4 + 2$ $= \frac{1}{4} \left(c \circ s(u) d u \right)$
$1 - 4 \sqrt{3} dx$	$d = 4 \times 3 d \times 1$
$dx = \frac{dy}{4x^3} = \frac{1}{4} \int \cos u du$	$\frac{1}{4}d_{u} = x^{3}dx = \frac{1}{4}sin(x^{4}+z)+C$
$=\frac{1}{4}\sin u + C$	
$=\frac{1}{4}sin(x^{4}+2)+C$	
4 STACX 7272C	

The trickiest thing about subsitution is deciding what to substitute. As substitution is (usually) undoing the chain rule you chould let your *u* be the inside function. Choose *u* to be the stuff inside of a power, root sign, denominator, or trigonometric function. When you are choosing your u the derivative of u should appear elsewhere in the integrand up to a constant multiple. The only way to get better is a lot of practice!

Once you make your subsitution the integral usually simplifies considerably. If your original variable does not completely disappear when making the subsitution you either (a) chose a subsitution that doesn't work or (b) made a mistake. At this stage you can try something different, or start your original substitution again. (cosx)4

Example 3: Evaluate the following indefinite integrals.

(a)
$$\int \sqrt{3x+2} dx$$

 $\int \sqrt{3x+2} dx$
 $\int \sqrt{3x+2$

Example 4: Evaluate the following indefinite integrals.

(a)
$$\int \frac{\sec^2 x}{\tan^2 x} dx = \int \frac{1}{\sqrt{2}} du$$

(b) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-x^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^2}} du$
(c) $\int \frac{x}{\sqrt{1-u^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^4}} du$
(c) $\int \frac{x}{\sqrt{1-u^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^4}} du$
(c) $\int \frac{x}{\sqrt{1-u^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^4}} du$
(c) $\int \frac{x}{\sqrt{1-u^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^4}} du$
(c) $\int \frac{x}{\sqrt{1-u^4}} dx = \frac{1}{2} \int \frac{1}{\sqrt{1-u^4}} du$
(c) $\int \frac{x}{\sqrt{1-u^4}} dx$
(c) $\int \frac{x}{\sqrt{1-u^4}}$

Example 5: Evaluate the following indefinite integrals.

(a)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$
 $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$
 $= 2 \int e^{-\sqrt{x}} dv$
 $= \frac{1}{\sqrt{x}} dx$
 $= \frac{1}{\sqrt{x}} dx$

UAF Calculus I

(b)
$$\int \frac{\arctan x}{x^2 + 1} dx$$

 $= \int \bigcup d \bigcup$
 $= \int \bigcup d \bigcup$
 $= \frac{1}{2} \bigcup \frac{3}{2} + (2 - 1) \bigcup \frac{3}{2} + (2 - 1)$

٦

Example 6: Evaluate the following indefinite integrals.

Э

Sometimes when you do substitution you also end up solving for your variable in the substitution. For example:

Example 9: Evaluate
$$\int x^5 \sqrt{x^3 + 1} dx$$
 = $\int \chi^3 \cdot \chi^3 (\sqrt{x^3 + 1}) dx$
 $U = \chi^3 + |$
 $\int (u - 1) \cdot u^{1/3} \cdot \frac{1}{3} du$
 $\int du = 3 \times^3 dx$ = $\frac{1}{3} \int (u^3 \cdot 2 - u^{1/3}) du$
 $\int du = \chi^3 dx$ = $\frac{1}{3} \int (u^3 \cdot 2 - u^{1/3}) du$
 $\chi^3 = u - 1$ = $\frac{1}{3} \int (\frac{3}{5} u^{-5/3} - \frac{3}{3} u^{-3}) + C$ \neq plug in
 $\chi^3 = u - 1$ = $\frac{1}{3} \int (\frac{3}{5} u^{-5/3} - \frac{3}{3} u^{-3}) + C$ $\chi^3 + 1$ for u .

Example 10: Evaluate $\int x\sqrt{x+2} \, dx$ $v = \chi + \lambda$ dv = dx= { (u->> [u du $= \int \left((3^{3/2} - 2^{1/2}) d \right) d u$ x= u-2 $=\frac{2}{5}\sqrt{5/2}-\frac{4}{2}\sqrt{3/2}+C$ 3/2 $=\frac{2}{5}(x+2)^{5/2}-\frac{4}{2}(x+2)$ **Definite Integrals**

The Substitution Rule for Definite Integrals: If g' is continuous on [a, b] and f is continuous on the range of u = g(x), then Plussin 10 and ver

$$\begin{array}{c} \mathbf{x} \in \mathbf{x} \\ \mathbf{x} \in \mathbf{y} \\ \mathbf{x} \in \mathbf{$$

Example 11: Evaluate $\int_{0}^{\pi/2} \sin^3 x \cos x \, dx$ two ways:

 $u = sin \times 0$: u = sin 0 = 0 $du = cos \times d \times u = sin = 1$ b) using substitution

du

a) going back to x's

$$\begin{aligned}
x^{=T/2} \\
& \\ & \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\\\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\ \\
& \\\\
& \\ \\
& \\\\
& \\\\
& \\\\
& \\\\
& \\\\
& \\\\
& \\\\
& \\$$

$$\int_{0}^{\pi/2} \sin^{3} x \cos x \, dx = \int_{0}^{\pi/2} \sqrt{\frac{3}{2}} \, dx$$
$$= \frac{1}{4} \sqrt{\frac{9}{2}} \left|_{0}^{\pi/2} - \frac{1}{4} \left(1^{4} - 0^{4}\right)\right|$$
$$= \frac{1}{4} \left(1^{4} - 0^{4}\right)$$
$$= \frac{1}{4} \left(1^{4} - 0^{4}\right)$$

UAF Calculus I

5-5 Subsitution Rule (Part 1)