Lecture: 5-5 The Substitution Rule (Part 1)
Example 1: How would we factor $x^{4}-5 x^{2}+6$ and how might it relate to finding $\int 2 x \sqrt{1+x^{2}} d x$?

$$
\begin{aligned}
u & =x^{2} \quad u^{2}-5 u+6 \\
& =(v-2)(u-3) \\
& =\left(x^{2}-2\right)\left(x^{2}-3\right)
\end{aligned} \quad\left\{\begin{array}{l}
u=1+x^{2} \\
\frac{d u}{d x}=2 x \\
d u=2 x d x
\end{array}\right.
$$

$$
\begin{aligned}
& \int 2 x \sqrt{1+x^{2}} d x \\
& =\int \sqrt{v} d u \\
& =\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{3}\left(1+x^{2}\right)^{3 / 2}+C
\end{aligned}
$$

The Substitution Rule If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Note, the substitution rule is basically undoing the chain rule.

$$
\text { So... } \begin{aligned}
v & =g(x) \\
\frac{d u}{d x} & =g \hat{g}(x) \Rightarrow d u=g^{\prime}(x) d x
\end{aligned}
$$

Example 2: Evaluate $\int x^{3} \cos \left(x^{4}+2\right) d x$ two different ways:
(a) solve for $d x$.

$$
\begin{aligned}
& \begin{aligned}
u=x^{4}+2
\end{aligned} \\
& d u=4 x^{3} d x \\
& d x=\frac{d u}{4 x^{3}}=\frac{1}{4} \int \cos v d v \frac{d v}{4 x^{3}} \\
&=\frac{1}{4} \sin v+C \\
&=\frac{1}{4} \sin \left(x^{4}+2\right)+c
\end{aligned}
$$

(b) solve for $x^{3} d x$.

$$
\begin{gathered}
\left.u=x^{4}+2 \quad=\frac{1}{4}\right) \cos (u) d u \\
d v=4 x^{3} d x \quad=\frac{1}{4} \sin \left(x^{4}+2\right)+C \\
\frac{1}{4} d u=x^{3} d x \quad
\end{gathered}
$$

The trickiest thing about substitution is deciding what to substitute. As substiution is (usually) undoing the chain rule you chould let your u be the inside function. Choose u to be the stuff inside of a power, root sign, denominator, or trigonometric function. When you are choosing your u the derivative of u should appear elsewhere in the integrand up to a constant multiple. The only way to get better is a lot of practice!
Once you make your substitution the integral usually simplifies considerably. If your original variable does not completely disappear when making the substitution you either (a) chose a substitution that doesn't work or (b) made a mistake. At this stage you can try something different, or start your original substitution again.
Example 3: Evaluate the following indefinite integrals.

$$
(\cos x)^{4}
$$

(a) $\int \sqrt{3 x+2} d x$

(b) $\int \cos ^{4} x \sin x d x$
$=-\int u^{4} d u$

$$
c=\cos x
$$

$$
\begin{aligned}
& d=-\sin x d x=-\frac{1}{5} u^{5}+C \\
& -\alpha v=\sin x d x
\end{aligned}
$$

Example 4: Evaluate the following indefinite integrals.

$$
\begin{aligned}
& =\frac{-1}{5} \cos ^{5} x+C \\
& =\frac{1}{2} \int \frac{1}{\sqrt{1-u^{2}}} d u
\end{aligned}
$$

$$
\begin{aligned}
& u=\tan x \\
& d u=\sec ^{2} x d x=\int u^{-2} d u \\
&=-u^{-1}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int \frac{x}{\sqrt{1-x^{2}} d x}=\frac{1}{2} \int \frac{1}{\sqrt{1-u^{2}}} d u \\
& \frac{d v=2 x d x}{2}=\frac{1}{2} \sin ^{-1} u+C \\
& \frac{d v}{2}=x d x
\end{aligned}
$$

Example 5: Evaluate the following indefinite integrals.

$$
\begin{array}{ll}
& \text { (a) } \int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x \\
= & v=\sqrt{x} \\
= & d u=\frac{1}{2 \sqrt{x}} d x \\
= & 2 d v=\frac{1}{\sqrt{x}} d x \\
= & e^{v+C}+C
\end{array}
$$

(b) $\int \frac{\arctan x}{x^{2}+1} d x$
$=\int v d v$

$$
\begin{aligned}
& =\frac{\frac{1}{2} v^{2}+<}{=\frac{1}{2}(\arctan x)^{2}+<} \\
& \frac{5-5 \text { Substitution Rule (Part } 1)}{}
\end{aligned}
$$

Example 6: Evaluate the following indefinite integrals.

$$
u=\sin \theta
$$

$$
d v=\cos \theta d \theta
$$

(b) $\int \tan x d x=\int \frac{\sin x}{\cos x} d x$

$$
\begin{gathered}
v=\cos x \\
d u=-\sin x d x
\end{gathered} \quad=-\int \frac{d v}{v}
$$

$$
=-\ln |u|+C
$$

$$
\begin{gathered}
=\ln \mid \cos x 1+C \\
\ln \mid \sec x 1+c
\end{gathered}
$$

Example 8: Evaluate $\int \frac{5+x}{1+x^{2}} d x .=\int \frac{5}{1+x^{2}} d x+\int \frac{x}{1+x^{2}} d x$

$$
\begin{aligned}
& v=1+x^{2} \\
& d v=2 x d x \\
& \frac{d v}{\partial}=x d x
\end{aligned}
$$

$$
=\operatorname{Sarctan} x+\frac{1}{2} \int \frac{1}{v} d u
$$

$$
=\operatorname{sarctan} x+\frac{1}{2} \ln \left|1+x^{2}\right|+c
$$

$$
\begin{aligned}
& \text { (a) } \int(1+\tan x)^{5} \sec ^{2} x d x \\
& v=)+\tan x=\int v^{s} d v \\
& d u=\sec ^{2} x d x=\frac{1}{6} v^{6}+C \\
& =\frac{1}{6}(1+\tan x)^{6}+C \\
& \text { (b) } \int \frac{\cos (\pi / x)}{x^{2}} d x \\
& u=\pi / x \\
& =-\frac{1}{\pi} \sin x+C \\
& -\frac{1}{\pi} d u=\frac{1}{x^{2}} d x \quad=-\frac{1}{\pi} \sin (\pi / x)+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \\
& =\int v^{-2} d v \\
& =-v^{-1}+C \\
& =-\frac{1}{\operatorname{sir} \theta+C}
\end{aligned}
$$

Sometimes when you do substitution you also end up solving for your variable in the substitution. For example:
Example 9: Evaluate $\int x^{5} \sqrt{x^{3}+1} d x=\int x^{3} \cdot x^{2} \sqrt{x^{3}+1} d x$

$$
\begin{array}{ll}
u=x^{3}+1 & \\
d u=3 x^{2} d x & (u-1) \cdot u^{1 / 2} \cdot \frac{1}{3} d u \\
\frac{1}{3} d u=x^{2} d x & \\
x^{3}=u-1 & =\frac{1}{3} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{1}{3}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{7 / 2}\right)+C
\end{array}
$$

Example 10: Evaluate $\int x \sqrt{x+2} d x$

$$
\begin{aligned}
& u=x+2 \\
& d u=d x=\{(u-2) \sqrt{u} d u \\
& x=u-2=\frac{2}{5} u\left(5 / 2 u^{1 / 2} d u\right. \\
& \text { Definite Integrals }
\end{aligned}
$$

The Substitution Rule for Definite Integrals: If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$, then

$$
\begin{aligned}
& \text { plug: n lower } \\
& \text { and upend to loundstangl. } x=\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
\end{aligned}
$$

Example 11: Evaluate $\int_{0}^{\pi / 2} \sin ^{3} x \cos x d x$ two ways:

$$
\begin{array}{ll}
u=\sin x & 0: u=\sin 0=0 \\
d u=\cos x d x & v=\sin \pi / 2=1
\end{array}
$$

a) going back to x^{\prime} s

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{3} x \cos x d x & =\int_{x=0}^{x=\pi / 2} u^{3} d u \\
& =\left.\frac{1}{4} u^{4}\right|_{x=0} ^{x=\pi / 2} \\
& =\left.\frac{1}{4} \sin ^{4} x\right|_{0} ^{\pi / 2} \\
& =\frac{1}{4}\left(\sin ^{4} \pi / 2-\sin ^{4} 0\right)=\frac{1}{4}
\end{aligned}
$$

b) using substitution

$$
\left.\begin{array}{rl}
\int_{0}^{\pi / 2} \sin ^{3} x & \cos x d x
\end{array}\right)=\int_{0}^{1} i^{3} d u
$$

