LECTURE: 5-5 THE SUBSTITUTION RULE (PART 1)

Example 1: How would we factor z* — 52 4+ 6 and how might it relate to finding / 2z 1+ 22 dz?
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The Substitution Rule If © = g(x) is a differentiable function whose range is an interval I and f is
continuous on [ then
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Note, the substitution rule is basically undoing the C'\’\ a(n rule.

Example 2: Evaluate / 2% cos(z* + 2) dx two different ways:

(b) solve for 3 dx.
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(a) solve for dzx.
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The trickiest thing about subsitution is deciding what to substitute. As substiution is (usually) undoing the chain
rule you chould let your u be the inside function. Choose u to be the stuff inside of a power, root sign, denominator,
or trigonometric function. When you are choosing your u the derivative of u should appear elsewhere in the
integrand up to a constant multiple. The only way to get better is a lot of practice!

Once you make your subsitution the integral usually simplifies considerably. If your original variable does not
completely disappear when making the subsitution you either (a) chose a subsitution that doesn’t work or (b)
made a mistake. At this stage you can try something different, or start your original substitution again.
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Example 3: Evaluate the following indefinite integrals. Q 05 ><>
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Example 4: Evaluate the following indefinite integrals.
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Example 5: Evaluate the following indefinite integrals.
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Example 6: Evaluate the following indefinite integrals
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Example 7: Evaluate the following indefinite integrals

(a) /(1 + tan z)° sec? x dx
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Sometimes when you do substitution you also end up solvmg for your Varlable in the substitution. For example:

Example 9: Evaluate/ "Vad 4 ldr. — S 4 X >< '(.’l &X
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Example 10: Evaluate / v+ 2dr
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Definite Integrals
The Substitution Rule for Definite Integrals: If ¢’ is continuous on [a, b] and f is continuous on the range of
u = g(x), then
—_— b__a( g(b)
I j floeg/ @ do = [ fu)du
AN C)Q }Q Yo (l\ x= g9(a)
077 outh b\v,\o'\‘b '
/2 =z 4 0" u=¢~0=<=0
Example 11: Evaluate / sin® z cos x da two ways: ~ Sy A . SV\_
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