Lecture: 5-5 The Substitution Rule (Part 2)

Recall:

The Substitution Rule for Definite Integrals: If g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Example 1: Evaluate the following definite integrals.
a) $\int_{e}^{e^{3}} \frac{1}{x(\ln x)^{2}} d x$
b) $\int_{1}^{2} x \sqrt{x-1} d x$

Example 2: Evaluate the following definite integrals.
a) $\int_{0}^{2} \frac{x}{x^{2}+4} d x$
b) $\int_{a}^{b} z^{2} \cos \left(1-z^{3}\right) d z$

Symmetry

- A function f is even if \qquad Even functions are symmetric about the
- A function f is odd if \qquad Odd functions are symmetric about the

Integrals of Even/Odd Functions: Suppose a function $f(x)$ is (blank) on $[-a, a]$. Then,
(a) (even) $\int_{-a}^{a} f(x) d x$
(b) (odd) $\int_{-a}^{a} f(x) d x$

Example 3: Evaluate the following definite integrals.
(a) $\int_{-2}^{2}\left(x^{2}+1\right) d x$
(b) $\int_{-1}^{1} \frac{\tan x}{1+x^{2}} d x$

Example 4: If f is continuous and $\int_{0}^{9} f(x) d x=4$, find $\int_{0}^{3} x f\left(x^{2}\right) d x$.

Example 5: Evaluate $\int_{-3}^{3}(x+5) \sqrt{9-x^{2}} d x$.

Example 6: Doing (some) substitutions quickly. In later Calculus courses (Calculus 2 especially) it is quite useful to be able to do some very simple substitutions without having to go through writing out u and $d u$. Do the following integrals using substitution and then see if you can see the pattern well enough to not need to do all of the work.
(a) $\int e^{5 x} d x$
(b) $\int \sin \left(\frac{\pi}{2} x\right) d x$
(c) $\int \sqrt{1-2 x} d x$

Example 7: Integrate the following functions. Check your answers using a derivative.
(a) $\int \sec ^{2}\left(\frac{\pi}{4} \theta\right) d \theta$
(b) $\int \sec (2 x) \tan (2 x) d x$
(c) $\int \sqrt{1+4 x} d x$

Example 8: Evaluate the following integrals.
(a) $\int x e^{-x^{2}} d x$
(b) $\int_{1}^{4} \frac{1}{x^{2}} \sqrt{1+\frac{1}{x}} d x$

