Final Review - Chapter 2
 (Limits, + Continuity + L'Hospital's Rule)

Example 1: Sketch the graph of $f(x)=\left\{\begin{array}{l}\sqrt{-x}, \text { if } x<0 \\ x^{2} \text { if } 0<x \leq 2 \\ x-5, \text { if } x>2\end{array}\right.$ and give the interval on which f is continuous. At what numbers is f continuous from the right, left or neither?

d) $\lim _{x \rightarrow 2^{-}} f(x)$
a) $\lim _{x \rightarrow 0^{-}} f(x)$
e) $\lim _{x \rightarrow 2^{+}} f(x)$
b) $\lim _{x \rightarrow 0^{+}} f(x)$
f) $\lim _{x \rightarrow 2} f(x)$
c) $\lim _{x \rightarrow 0} f(x)$

- Find limits using factoring, algebra, conjugates.

Example 2: Find the following limits:
a) $\lim _{x \rightarrow-1^{-}} f(x)$ for $f(x)= \begin{cases}x^{2}-1 & \text { for } x<1 \\ 2 x+3 & \text { for } x \geq 1\end{cases}$
b) $\lim _{x \rightarrow 1} e^{x-1} \sin \left(\frac{\pi x}{2}\right)$
c) $\lim _{x \rightarrow 0} \frac{5 x^{2}}{1-\cos x}$

Example 3: Find the following limits:
a) $\lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x^{2}+x-12}$
b) $\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}$
c) $\lim _{x \rightarrow-4} \frac{\frac{1}{4}+\frac{1}{x}}{4+x}$

- Find infinite limits. As in the limit is equal to plus or minus infinity or has an infinite discontinuity.
- Find limits at infinity. This means x goes to plus or minus infinity.

Example 4: Find the following limits:
a) $\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}$
b) $\lim _{x \rightarrow \pi^{-}} \cot x$

Example 5: Find the following limits.
a) $\lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)}$
b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$

Example 6: Find the following limits.
a) $\lim _{x \rightarrow \infty} \sec \left(\frac{x^{2}}{x^{3}-2}\right)$
b) $\lim _{x \rightarrow 0^{+}} \arctan (1 / x)$

Example 7: Find the following limits using l'Hospital's rule. I won't tell you explicitly to do this on the exam. You will have to know when you can/ cannot apply this rule.
a) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}}$
b) $\lim _{h \rightarrow 0} \frac{\sin h}{h \cos h}$

- Know and apply the defintion of continuity.
- Determine where a function is discontinuous and why. continuous.

Definition of Continuity A function f is continuous at c if the following three conditions are met:
1.
2.
3. \qquad

Example 8: Find all points of discontinuity of $h(x)=\frac{x-4}{x^{2}-x-12}$ and explain why the points are discontinuous and state if they are removable or non-removable.

Final Review - Chapter 3 (Derivative rules)

- Find derivatives using the limit defintion.
- Know how to apply the sum, difference, product, quotient, and chain rules.
- Know when to use logarithmic differentiation to find a derivative.

Example 1: Find the derivative of $f(x)=9+x-2 x^{2}$ using the definition of the derivative. Then find an equation of the tangent line at the point $(2,3)$.

Example 2: Calculate y^{\prime}.
a) $y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt[5]{x^{3}}}$
b) $y=\frac{\tan x}{1+\cos x}$

Example 3: Calculate y^{\prime}.

a) $y=x \cos ^{-1} x$
b) $y=(\arcsin (2 x))^{2}$

Example 4: Calculate y^{\prime}.
a) $y=e^{x \sec x}$
b) $y=10^{\tan (\pi \theta)}$

Example 5: Find $\frac{d y}{d x}$.
a) $y=\arcsin \left(e^{2 x}\right)$
b) $y=\int_{x^{2}}^{3} \frac{t+4}{\cos t} d t$

Example 6: Find the derivative of $h(x)=\ln \left(\frac{x^{2}-4}{2 x+5}\right)$

- Solve related rates problems.

Example 7: The sides of an equilaterial triangle are increasing at a rate of $10 \mathrm{~cm} / \mathrm{min}$. At what rate is the area of the triangle increasing when the sides are 30 cm long? $\left(A=\frac{\sqrt{3}}{4}(\text { side })^{2}\right)$

Example 8: The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$?

