Final Review - Chapter 2 (Limits, + Continuity + L'Hospital's Rule)

Example 1: Sketch the graph of $f(x)=\left\{\begin{array}{l}\sqrt{-x}, \text { if } x<0 \\ x^{2} \text { if } 0<x \leq 2 \\ x-5, \text { if } x>2\end{array}\right.$ and give the interval on which f is continuous. At what numbers is f continuous from the right, left or neither?

$$
\begin{aligned}
& (-\infty, 0) \cup(0,2) \\
& \cup(2, \infty)
\end{aligned}
$$

cts from left!

a) $\lim _{x \rightarrow 0^{-}} f(x)=0$
d) $\lim _{x \rightarrow 2^{-}} f(x)=\Psi$
e) $\lim _{x \rightarrow 2^{+}} f(x)=-3$
b) $\lim _{x \rightarrow 0^{+}} f(x)=0$
f) $\lim _{x \rightarrow 2} f(x)=D N E$
c) $\lim _{x \rightarrow 0} f(x)=0$

- Find limits using factoring, algebra, conjugates.

Example 2: Find the following limits:
a) $\lim _{x \rightarrow-1^{-}} f(x)$ for $f(x)=\left\{\begin{array}{ll}x^{2}-1 & \text { for } x<1 \\ 2 x+3 & \text { for } x \geq 1\end{array}<\right.$

$$
\lim _{x \rightarrow-1^{-}} f(x)=f(-1)=(-1)^{2}-1=0
$$

Example 3: Find the following limits:

$$
\text { a) } \begin{aligned}
& \lim _{x \rightarrow 1} e^{x-1} \sin \left(\frac{\pi x}{2}\right) \\
& =e^{1-1} \sin \left(\frac{\pi}{2}\right) \\
& =e^{0.1}=1
\end{aligned}
$$

b) $\lim _{x \rightarrow 0} \frac{5 x^{2}}{1-\cos x}$ $\frac{0}{0}$

$$
\begin{aligned}
& \text { L.H. } \lim _{x \rightarrow 0} \frac{10 x}{\sin x} \\
& \stackrel{10}{=} \lim _{x \rightarrow 0} \frac{10}{\cos x}=10
\end{aligned}
$$

Example 4: Find the following limits:

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x^{2}+x-12} \frac{0}{0} \\
= & \lim _{x \rightarrow 3} \frac{2(x+3)(x-3)}{(x-3)(x+4)} \\
= & \frac{2(3+3)}{3+4}=\frac{12}{7}
\end{aligned}
$$

b) $\lim _{h \rightarrow 0} \frac{(4+h)^{3}-64}{h}$

$$
=\lim _{h \rightarrow 0} \frac{64+48 h+12 h^{2}+h^{3}-64}{h}
$$

$$
\begin{aligned}
=\lim _{h \rightarrow 0} 48+12 h+h^{2} & =48+0+0 \\
& =48
\end{aligned}
$$

Example 5: Find the following limits:
a) $\lim _{x \rightarrow-4}^{\frac{x}{y}} \frac{1}{4}+\frac{1}{x} \cdot \frac{4}{4}$

$$
=\lim _{x \rightarrow-4} \frac{x+4}{4 x}=\lim _{x \rightarrow-4} \frac{1}{4 x}=-\frac{1}{16}
$$

- Find infinite limits. As in the limit is equal to plus or minus infinity or has an infinite discontenuity.
- Find limits at infinity. This means x goes to plus or minus infinity.

Example 6: Find the following limits:
a) $\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}} \approx \frac{e^{5}}{-^{\prime \prime} 0^{--}}$
b) $\lim _{x \rightarrow \pi^{-}} \cot x=\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{\sin x} \frac{-1}{0+}$

Example 7: Find the following limits.

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow \infty} \frac{4 x^{4}+5}{\left(x^{2}-2\right)\left(2 x^{2}-1\right)} \cdot 1 / x^{4} \\
& =\lim _{x \rightarrow \infty} \frac{4+5 / x^{4}}{\left(1-2 / x^{2}\right)\left(2-1 / x^{2}\right)} \\
& =\frac{4}{1.2}=2 \\
& \text { b) } \lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}+x}}{-x^{3}+1} \cdot \frac{1}{x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{9+\frac{x}{x^{6}}}}{-1+\frac{1}{x^{3}}}=\frac{\sqrt{9}}{-1} \\
& =-3
\end{aligned}
$$

Example 9: Find the following limits.

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow \infty} \sec \left(\frac{x^{2}}{x^{3}-2}\right) \cdot \frac{1}{x} \cdot \frac{1}{x^{2}} x^{2} \\
& =\lim _{x \rightarrow \infty} \sec \left(\frac{1}{x-2 / x^{2}}\right) \\
& =\sec 0=1 \\
& \text { b) } \lim _{x \rightarrow 0^{+}} \arctan (1 / x) \\
& =\pi / 2 \\
& \left(\lim _{x \rightarrow \infty} \arctan x=\pi / \partial\right)
\end{aligned}
$$

Example 10: Find the following limits using l'Hospital's rule. I won't tell you explicitly to do this on the exam. You will have to know when you can/ cannot apply this rule.
L. H
$=$
a) $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}} \quad-\frac{\infty}{\infty}$
b)

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sin h}{h \cos h} & =\ell_{h \rightarrow 0} \frac{\cos h}{\cos h-h \sin h} \\
& =\frac{1}{1-0}=\square
\end{aligned}
$$

- Know and apply the defintion of continuity.
- Determine where a function is discontinuous and why. continuous.

Definition of Continuity A function f is continuous at c if the following three conditions are met:

1. $x=c$ is in domain of $f(f(c)$ exists)
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $f(c)=\lim _{x \rightarrow c} f(x)$

Example 11: Find all points of discontinuity of $h(x)=\frac{x-4}{x^{2}-x-12}$ and explain why the points are discontinuous and state if they are removable or non-removable.

$$
\begin{aligned}
h(x)=\frac{x-4}{(x-4)(x+3)} & \text { discontinuous } Q=-3,4(\div 0) \\
x & =4 \text { is removable } \\
x & =-3 \text { is nat removable }
\end{aligned}
$$

Final Review - Chapter 3 (Derivative rules)

- Find derivatives using the limit defintion.
- Know how to apply the sum, difference, product, quotient, and chain rules.
- Know when to use logarithmic differentiation to find a derivative.

Example 1: Find the derivative of $f(x)=9+x-2 x^{2}$ using the definition of the derivative. Then find an equation of the tangent line at the point $(2,3)$.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{9+(x+h)-2(x+h)^{2}-9-x+2 x^{2}}{h} \\
= & \lim _{h \rightarrow 0} \frac{\left.9+x+h-2 x^{2}-4 x h-2 h^{2}-91-x+2\right) x}{h} \\
= & \lim _{h \rightarrow 0} \frac{h-4 x h-2 h^{2}}{h}=\lim _{h \rightarrow 0} 1-4 x-2 h=1-4 x \\
& m=1-4(2)=-7 \quad y-3=-7(x-2)
\end{aligned}
$$

Example 2: Calculate y^{\prime}.

$$
\text { a) } \begin{aligned}
y & =\frac{1}{\sqrt{x}}-\frac{1}{\sqrt[5]{x^{3}}} \\
& =x^{-1 / 2}-x^{-3 / 5} \\
y^{\prime} & =-1 / 2 x^{-3 / 2}+\frac{3}{5} x^{-8 / 5}
\end{aligned}
$$

b)

$$
\begin{aligned}
& y=\frac{\tan x}{1+\cos x} \\
& y^{\prime}=\frac{(1+\cos x) \sec ^{2} x-\tan x(-\sin x)}{(1+\cos x)^{2}}
\end{aligned}
$$

Example 3: Calculate y^{\prime}.
a) $y=x \cos ^{-1} x$

$$
y^{\prime}=\cos ^{-1} x-\frac{x}{\sqrt{1-x^{2}}}
$$

$$
\begin{aligned}
& \text { b) } y=(\arcsin (2 x))^{2} \\
& y^{\prime}=2 \arcsin (2 x) \cdot \frac{1}{\sqrt{1-(2 x)^{2}}} \cdot 2 \\
& =\frac{4 \arcsin (2 x)}{\sqrt{1-4 x^{2}}}
\end{aligned}
$$

Example 4: Calculate y^{\prime}.

$$
\begin{array}{ll}
y^{\prime}=e^{x} \begin{array}{l}
\text { a) } y=e^{x \sec x} \\
\sec x
\end{array}(\sec x & y^{\prime}=10^{\tan (\pi \theta)} \cdot \ln 10 \cdot \sec ^{2}(\pi \theta) \cdot \pi \\
\quad+x \sec x \tan x) &
\end{array}
$$

Example 6: Find $\frac{d y}{d x}$.
a) $y=\arcsin \left(e^{2 x}\right)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{\sqrt{1-\left(e^{2 x}\right)^{2}}} \cdot e^{2 x} \cdot 2 \\
& =\frac{2 e^{2 x}}{\sqrt{1-e^{4 x}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } y=\int_{x^{2}}^{3} \frac{t+4}{\cos t} d t \\
& y=-\int_{3}^{x^{2}} \frac{t+4}{\cos t} d t \\
& y^{\prime}=-\frac{x^{2}+4}{\cos \left(x^{2}\right)} \cdot 2 x
\end{aligned}
$$

Example 7: Find the derivative of $h(x)=\ln \left(\frac{x^{2}-4}{2 x+5}\right)=\ln \left(x^{2}-4\right)-\ln (2 x+5)$

$$
\begin{aligned}
h^{\prime}(x) & =\frac{1}{x^{2}-4} \cdot 2 x-\frac{1}{2 x+5} \cdot 2 \\
& =\frac{2 x}{x^{2}-4}-\frac{2}{2 x+5}
\end{aligned}
$$

- Solve related rates problems.

Example 11: The sides of an equilaterial triangle are increasing at a rate of $10 \mathrm{~cm} / \mathrm{min}$. At what rate is the area of the triangle increasing when the sides are 30 cm long? $\left(A=\frac{\sqrt{3}}{4} \text { (side) }\right)^{2}$)

30 cm

$$
\begin{aligned}
& \frac{d s}{d t}=10 \mathrm{~cm} / \mathrm{min} \\
& \mathrm{~cm}=\frac{\sqrt{3}}{4} \mathrm{~s}^{2} \\
& \frac{d A}{d t}=\frac{\sqrt{3}}{2} \mathrm{~s} \cdot \frac{d \mathrm{~s}}{d t}
\end{aligned}
$$

$$
\frac{d A}{d t}=\frac{\sqrt{3}}{2}(30)(10)=150 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{min}
$$

Example 12: The altitude of a triangle is increasing at a rate $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $2 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is $100 \mathrm{~cm}^{2}$?

$$
\frac{d b}{d z} ?
$$

$$
\frac{d A}{d t}=\frac{1}{2}\left(a \frac{d b}{d t}+b \frac{d a}{d t}\right)
$$

$$
\begin{aligned}
& \frac{d a}{d t}=1 \mathrm{~cm} / \mathrm{min} \\
& \frac{d A}{d t}=2 \mathrm{~cm}^{2} / \mathrm{min} \\
& n=10
\end{aligned}
$$

$$
A=\frac{1}{2} a b
$$

$$
2=\frac{1}{2}\left(10 \cdot \frac{d b}{d t}+20(1)\right)
$$

$$
\Rightarrow \frac{d b}{d t}=-1.6 \mathrm{~cm} / \mathrm{min}
$$

$$
\frac{x}{\partial t}=10=10=100 \Rightarrow 100=\frac{1}{2}(19)(b) \Rightarrow b=20
$$

