Final Review - Chapter 2
(Limits, + Continuity + L'Hospital’s Rule)
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¢ Find limits using factoring, algebra, conjugates.

Example 2: Find the following limits:
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Example 3: Find the following limits:
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Example 4: Find the following limits:
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Example 5: Find the following limits:
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¢ Find infinite limits. As in the limit is equal to plus or minus infinity or has an infinite discon-
tinuity.

e Find limits at infinity. This means z goes to plus or minus infinity.

Example 6: Find the following limits:
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Example 7: Find the following limits.
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Example 9: Find the following limits.
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Example 10: Find the following limits using 'Hospital’s rule. I won't tell you explicitly to do this on
the exam. You will have to know when you can/ cannot apply this rule.
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¢ Know and apply the defintion of continuity.
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e Determine where a function is discontinuous and why. continuous.



Definition of Continuity A function f is continuous at c if the following three conditions are

met:
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Example 11: Find all points of discontinuity of h(z) = 2‘%712 and explain why the points are
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discontinuous and state if they are removable or non-removable.
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Final Review - Chapter 3
(Derivative rules)

e Find derivatives using the limit defintion.
e Know how to apply the sum, difference, product, quotient, and chain rules.

¢ Know when to use logarithmic differentiation to find a derivative.

Example 1: Find the derivative of f(z) = 9 + z — 222 using the definition of the derivative. Then
find an equation of the tangent line at the point (2, 3).

—C\(X> _ Q. (€1 — £ () Q. "M(x#]n)—}(xﬂ\)l—‘l - >e4I%
. Q. v\ Qi
hs o IOPN o\

/Qmﬁ%—r/ﬂt\n 9/} Y ads — ;\,\ %%4}/

DO A

‘ U DL g U = |y
/Q'/‘" e — ?JZ,/V\ x> _]/Z<\

W= 0O o W3 O

|_/L(<9L>: %/%’/7(></;>




Example 2: Calculate y/'.
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Example 6: Find %
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e Solve related rates problems.

Example 11: The sides of an equilaterial triangle are increasing at a rate of 10 cm/min. At what rate
is the area of the triangle increasing when the sides are 30 cm long? (A = @ (side)?)
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Example 12: The altitude of a triangle is increasing at a rate of 1 cm/min while the area of the triangle
is increasing at a rate of 2 cm? /min. At what rate is the base of the triangle changing when the altitude
is 10 cm and the area is 100 cm?? db
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