- Find critical numbers of a function.
- Find the absolute maximum and absolute minimum of a function on a closed interval.

Example 1: Find the absolute maximum and minimum of $f(x) = xe^{x/2}$ on [-3, 1]

- Determine where a function is increasing decreasing.
- Determine where a function is concave up and concave down.

Example 2: Given $G(x) = 5x^{2/3} - 2x^{5/3}$

(a) Find the intervals of increase/ decrease.

- (b) Find the local maximum and minimum values.
- (c) Find the intervals of concavity and the inflection points.

• Solve max/ min optimization problems.

Example 3: A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.

Example 4: Suppose a box with a square base and open top must have a volume of 32 m³. Find the dimensions of the box that minimize the amount of material used.

Example 5: A rectangular storage container with an open top is to have a volume of 10 m³. The length of the base is twice the width. Material for the base costs \$10 per square meter. Material for the sides costs \$ 6 per square meter. Find the costs of materials for the cheapest such container.

• Apply Newton's method to take a "step" (get a better approximation of a root of a function.)

Example 6: Use one iteration of Newton's method with $x_1 = -1$ to get a better approximation of the root of $f(x) = x^7 + 4$. [I.e., find x_2 .] After that, graph f(x) and demonstrate how x_2 was obtained from x_1 .

Final Review - Chapter 5 (Integration)

~

Example 1: Find the most general antiderivative of the function.

a)
$$g(x) = \frac{1}{x} + \frac{1}{x^2 + 1}$$
 b) $f(x) = \frac{x^2 + \sqrt{x}}{x}$

Example 2: A particle is moving with $v(t) = 2t - 1/(1 + t^2)$ and s(0) = 1. Find the position of the particle.

Example 3: Compare/contrast the applications of FTC below.

a) Find the derivative of

$$g(x) = \int_{1}^{x^{2}} t^{3}\sqrt{1+t^{4}} dt$$
b) Evaluate $\int_{1}^{a} t^{3}\sqrt{1+t^{4}} dt$

Example 4: Estimate the area under the curve $y = x^2 + 2$ on the interval [0, 8] using 4 sub-intervals and the method given below.

a) left endpoints. b) midpoints.

Example 5: Evaluate the following definite integrals.

a)
$$\int_0^{\pi/4} \frac{\sec^2 t}{\tan t + 1} dt$$
 b) $\int_1^4 \frac{x - 2}{\sqrt{x}} dx$

Example 6: Evaluate the following indefinite integrals.

a)
$$\int \frac{\sin(1/x)}{x^2} dx$$
 b) $\int \frac{x}{(x-2)^3} dx$

Example 7: A particle moves along a line with velocity function $v(t) = 2 \sin t$, where v is measured in meters per second.

(a) Find the displacement over the time interval [0, 6]

(b) Find the total distance traveled during the time interval [0, 6]

Example 8: A bacteria population is 4000 at time t = 0 and its rate of growth is 1000×2^t bacteria per hour after *t* hours. What is the population after one hour?