Final Review - Chapter 4
 (Applications of Differentiation)

- Find critical numbers of a function.
- Find the absolute maximum and absolute minimum of a function on a closed interval.

Example 1: Find the absolute maximum and minimum of $f(x)=x e^{x / 2}$ on $[-3,1]$

- Determine where a function is increasing decreasing.
- Determine where a function is concave up and concave down.

Example 2: Given $G(x)=5 x^{2 / 3}-2 x^{5 / 3}$
(a) Find the intervals of increase/ decrease.
(b) Find the local maximum and minimum values.
(c) Find the intervals of concavity and the inflection points.

- Solve max/min optimization problems.

Example 3: A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.

Example 4: Suppose a box with a square base and open top must have a volume of $32 \mathrm{~m}^{3}$. Find the dimensions of the box that minimize the amount of material used.

Example 5: A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of the base is twice the width. Material for the base costs $\$ 10$ per square meter. Material for the sides costs $\$ 6$ per square meter. Find the costs of materials for the cheapest such container.

- Apply Newton's method to take a "step" (get a better approximation of a root of a function.)

Example 6: Use one iteration of Newton's method with $x_{1}=-1$ to get a better approximation of the root of $f(x)=x^{7}+4$. [I.e., find x_{2}.] After that, graph $f(x)$ and demonstrate how x_{2} was obtained from x_{1}.

Final Review - Chapter 5
 (Integration)

Example 1: Find the most general antiderivative of the function.
a) $g(x)=\frac{1}{x}+\frac{1}{x^{2}+1}$
b) $f(x)=\frac{x^{2}+\sqrt{x}}{x}$

Example 2: A particle is moving with $v(t)=2 t-1 /\left(1+t^{2}\right)$ and $s(0)=1$. Find the position of the particle.

Example 3: Compare/contrast the applications of FTC below.
a) Find the derivative of

$$
g(x)=\int_{1}^{x^{2}} t^{3} \sqrt{1+t^{4}} d t
$$

b) Evaluate $\int_{1}^{a} t^{3} \sqrt{1+t^{4}} d t$

Example 4: Estimate the area under the curve $y=x^{2}+2$ on the interval $[0,8]$ using 4 sub-intervals and the method given below.
a) left endpoints.
b) midpoints.

Example 5: Evaluate the following definite integrals.
a) $\int_{0}^{\pi / 4} \frac{\sec ^{2} t}{\tan t+1} d t$
b) $\int_{1}^{4} \frac{x-2}{\sqrt{x}} d x$

Example 6: Evaluate the following indefinite integrals.
a) $\int \frac{\sin (1 / x)}{x^{2}} d x$
b) $\int \frac{x}{(x-2)^{3}} d x$

Example 7: A particle moves along a line with velocity function $v(t)=2 \sin t$, where v is measured in meters per second.
(a) Find the displacement over the time interval $[0,6]$
(b) Find the total distance traveled during the time interval [0, 6]

Example 8: A bacteria population is 4000 at time $t=0$ and its rate of growth is 1000×2^{t} bacteria per hour after t hours. What is the population after one hour?

