
Final Review - Chapter 4
(Applications of Differentiation)

• Find critical numbers of a function.

• Find the absolute maximum and absolute minimum of a function on a closed interval.

Example 1: Find the absolute maximum and minimum of f(x) = xex/2 on [�3, 1]

• Determine where a function is increasing decreasing.

• Determine where a function is concave up and concave down.

Example 2: Given G(x) = 5x2/3 � 2x5/3

(a) Find the intervals of increase/ decrease.
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(b) Find the local maximum and minimum values.

(c) Find the intervals of concavity and the inflection points.

• Solve max/ min optimization problems.

Example 3: A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide,
by cutting a square from each of the four corners and bending up the sides. Find the largest volume that
such a box can have.
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Example 4: Suppose a box with a square base and open top must have a volume of 32 m3. Find the
dimensions of the box that minimize the amount of material used.

Example 5: A rectangular storage container with an open top is to have a volume of 10 m3. The
length of the base is twice the width. Material for the base costs $10 per square meter. Material for the
sides costs $ 6 per square meter. Find the costs of materials for the cheapest such container.

• Apply Newton’s method to take a “step” (get a better approximation of a root of a function.)

Example 6: Use one iteration of Newton’s method with x1 = �1 to get a better approximation of the
root of f(x) = x7 + 4. [I.e., find x2.] After that, graph f(x) and demonstrate how x2 was obtained from
x1.
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Final Review - Chapter 5
(Integration)

Example 1: Find the most general antiderivative of the function.
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Example 2: A particle is moving with v(t) = 2t � 1/(1 + t2) and s(0) = 1. Find the position of the
particle.

Example 3: Compare/contrast the applications of FTC below.

a) Find the derivative of

g(x) =
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Example 4: Estimate the area under the curve y = x2 + 2 on the interval [0, 8] using 4 sub-intervals
and the method given below.

a) left endpoints. b) midpoints.

Example 5: Evaluate the following definite integrals.
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Example 6: Evaluate the following indefinite integrals.
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Example 7: A particle moves along a line with velocity function v(t) = 2 sin t, where v is measured
in meters per second.

(a) Find the displacement over the time interval [0, 6]

(b) Find the total distance traveled during the time interval [0, 6]

Example 8: A bacteria population is 4000 at time t = 0 and its rate of growth is 1000⇥ 2t bacteria per
hour after t hours. What is the population after one hour?
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