Final Review - Chapter 4
(Applications of Differentiation)

e Find critical numbers of a function.

e Find the absolute maximum and absolute minimum of a function on a closed interval.

Example 1: Find the absolute maximum and minimum of f(z
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e Determine where a function is increasing decreasing.

e Determine where a function is concave up and concave down.

Example 2: Given G/(z) = 522/ — 22%/3

(a) Find the intervals of increase/ decrease. ny
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(b). Find the local maximum and minimum values. /
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(c) Find the intervals of concavity and the inflection points.
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e Solve max/ min optimization problems.

Example 3: A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide,
by cutting a square from each of the four corners and bending up the sides. Find the largest volume that
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such a box can have. Py
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Example 4: Suppose a box with a square base and open top must have a volume of 32 m?. Find the
dimensions of the box that minimize the amount of material used.
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Example 5: A rectangular storage container with an open top is to have a volume of 10 m3. The

length of the base is twice the width. Material for the base costs $10 per square meter. Material for the
sides costs $ 6 per square meter Find the costs of materials for the cheapest such container.
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e Apply Newton’s method to take a “step” (get a better approximation of a root of a function.)
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Example 6: Use one iteration of Newton’s method with z; = —1 to get a better approximation of the
root of f(z) = 27 + 4. [Le., find z5.] After that, graph f(z) and demonstrate how z was obtained from
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Final Review - Chapter 5

(Integration)
Example 1: Find the most general antiderivative of the function. |
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Example 2: A particle is moving with v(t) = 2¢t — 1/(1 + t?) and s(0) = 1. Find the position of the
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Example 3: Compare/contrast the applications of FTC below.
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Example 4: Estimate the area under the curve y = 22 + 2 on the interval [0, 8] using 4 sub-intervals

and the method given below.
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a) left endpoints. b) midpoints.
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Example 5: Evaluate the following definite integrals.
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Example 6: Evaluate the following indefinite integrals. >
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Example 7: A particle moves along a line with velocity function v(t) = 2sint, where v is measured
in meters per second.

(a) Find the displacement over the time interval [0, 6]
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(b) Find the total distance traveled during the time interval [0, 6]
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Example 8: A bacteria population is 4000 at time ¢ = 0 and its rate of growth is 1000 x 2! bacteria per
hour after ¢t hours. What is the population after one hour?
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