Your Name
Solutions

Instructor Name
\square

Your Signature
\square
End Time

Problem	Total Points	Score
1	6	
2	15	
3	6	
4	7	
5	12	
6	6	
7	6	
8	16	
9	5	
10	(6)	
11	100	
Extra Credit	Total	
Tot		

- The total time allowed for this exam is two hours.
- This test is closed notes and closed book.
- You may not use a calculator.
- In order to receive full credit, you must show your work. Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (6 points) The graph of the function $f(x)$ given below has domain [$-6,8]$. Use it to answer the questions below.
If you are asked to determine a limit, find the limit or one-sided limit as directed. Use ∞ and $-\infty$ where appropriate. If the limit does not exist and cannot be described using ∞ or $-\infty$, write "ONE".

(a) $\lim _{x \rightarrow-3^{-}} f(x)=1$
(c) $\lim _{x \rightarrow-3} f(x)=$ DNE
(b) $\lim _{x \rightarrow 1} f(x)=2$
(d) $\lim _{x \rightarrow 4^{-}} f(x)=\infty$
(e) At what x-values in its domain is $f(x)$ NOT continuous? If f is continuous everywhere on its domain, write "none".

at $x=-3,1,4$

(f) At what x-values in its domain is $f(x)$ NOT differentiable? If f is differentiable everywhere on its domain, write "none".

$$
\text { at } x=-3,-1,1,4,
$$

(g) What are the x-values corresponding to local maxima of $f(x)$? If there aren't any, write "none".

$$
\text { at } x=-4,-1,1,8 \leftarrow \text { optional }
$$

(h) What are the x-values corresponding to absolute maxima of $f(x)$? If there aren't any, write "none".

2 (15 points) Evaluate the following limits. Show all work and explain your reasoning algabraically or in words, when applicable.
(1) adress - $-\infty$
(2) correct selection/ algebra $w / 1 / x^{3}$
(1) ans.
(a) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}+1}}{x^{3}+5}=\lim _{x \rightarrow \infty} \frac{\sqrt{9(-x)^{6}+1}}{(-x)^{3}+5}$ $=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{9 x^{6}+1}\right) \frac{1}{x^{3}}}{\left(-x^{3}+5\right) 1 / x^{3}}$

$$
=\lim _{x \rightarrow \infty} \frac{\sqrt{9+1 / x^{6}}}{-1+5 / x^{3}}
$$

$$
=\frac{\sqrt{9}}{-1}
$$

$$
=-3
$$

(c) $\lim _{x \rightarrow 9-} \frac{\sqrt{x}}{(x-9)^{3}}=-\infty$
as $x \rightarrow q^{-}, \sqrt{x} \rightarrow 3$
as $x \rightarrow 95 x-9 \rightarrow$ small negative and $(x-9)^{3}$ is also a small negative.
(1) numerator $\rightarrow 3$
(1) denom $\rightarrow 0^{-}$
(1) ans $=-\infty$

$$
\text { (b) } \begin{aligned}
\lim _{x \rightarrow 0} \frac{\arcsin (4 x)}{x} & \stackrel{H}{=} \lim _{x \rightarrow 0}\left(\frac{4}{\frac{\sqrt{1-(4 x)^{2}}}{1}}\right) \\
& =\lim _{x \rightarrow 0} \frac{4}{\sqrt{0}} \frac{4}{\sqrt{1-16 x^{2}}} \\
& =\frac{4}{\sqrt{1}} \\
& =4
\end{aligned}
$$

(1) identify LH
(2) apply L'H correctly
(1) answer
(d) $\lim _{x \rightarrow 0^{+}}(1-2 x)^{1 / x}$

$$
y=(1-2 x)^{1 / x}
$$

$$
\ln y=\ln (1-2 x)^{1 / x}
$$

$$
\ln y=\frac{\ln (1-2 x)}{x}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \ln y & =\lim _{x \rightarrow 0} \frac{\ln (1-2 x)}{x} \\
& =\lim _{x \rightarrow 0}\left(\frac{-2}{1-2 x}\right) \\
& =-2
\end{aligned}
$$

(1) ans

Since $\lim _{x \rightarrow 0} \ln y=-2$, then

$$
\lim _{x \rightarrow 0} y=e^{-2}=1 / e^{2}
$$

3 (6 points)
(a) Complete the definition of the derivative of a function $f(x)$ below:
(2)

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) Find the derivative of $f(x)=5 x^{2}-x$ using the definition of the derivative. You must show your work to receive credit.

$$
\begin{aligned}
& f^{2}(x)=\lim _{h \rightarrow 0} \frac{5(x+h)^{2}-(x+h)-\left(5 x^{2}-x\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{5\left(x^{2}+2 x h+h^{2}\right)-x-h-5 x^{2}+x}{h} \\
&=\lim _{h \rightarrow 0} \frac{5 x^{2}+10 x h+5 h^{2}-x-h-5 x^{2}+x}{h} \\
&=\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}-h}{h} \\
&=\lim _{h \rightarrow 0}(10 x+5 h-1) \oplus \text { figebrai } \\
& 10 x-1 \quad \text { full simplify } \\
&
\end{aligned}
$$

4 (7 points) The volume of a circular cylinder is increasing at a rate of $20 \pi \mathrm{~m}^{3} / \mathrm{sec}$ while the radius is increasing at a rate of $2 \mathrm{~m} / \mathrm{sec}$. How must the height of the cylinder be changing when the volume is $90 \pi \mathrm{~m}^{3}$ and the radius is 3 m ? Include units with your answer. ($V=\pi r^{2} h$)
Know: $\left.\begin{array}{rl}\frac{d V}{d t} & =20 \pi \mathrm{~m}^{3} / \mathrm{sec} \\ \frac{d r}{d t} & =2 \mathrm{~m} / \mathrm{sec} .\end{array}\right]$
(1) identify 5 input correctly
want: $\frac{d h}{d t}$ when $v=90 \pi, r=3$, note $90 \pi=\pi \cdot 3^{2} \cdot h \Rightarrow 90 \pi=9 \pi h$ $\Rightarrow h=10$ (1) find h

$$
\begin{aligned}
& V=\pi r^{2} h \\
& \frac{d V}{d t}=2 \pi r \frac{d r}{d t} h+\pi r^{2} \frac{d h}{d t} \\
& 20 \pi=2 \pi(3)(2)(10)+\pi \cdot 3^{2} \cdot \frac{d h}{d t} \\
& 20 \pi=120 \pi+9 \pi \frac{d h}{d t} \\
& -100 \pi=9 \pi \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{-100}{9} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(3) for correct diff

$$
-2 \text { no prod rule }
$$

(1) ans
(1) units

The height is decreasing at a rate of 100/9 meters per second.

5 (12 points) Calculate the derivatives of the given functions. Do not simplify your answers, but use parentheses appropriately.
(a) $y=\left(x^{2}+1\right)^{\cos x}$

$$
\begin{aligned}
& \ln y=\ln \left(x^{2}+1\right)^{\cos x} \\
& \ln y=\cos x \cdot \ln \left(x^{2}+1\right) \\
& \frac{1}{y} y^{\prime}=-\sin x \cdot \ln \left(x^{2}+1\right)+\cos x \cdot \frac{2 x}{x^{2}+1} \\
& y^{\prime}=\left(\frac{2 x \cos x}{x^{2}+1}-\sin x \ln \left(x^{2}+1\right)\right)\left(x^{2}+1\right) \cos x
\end{aligned}
$$

(T1) ans
(b) $g(z)=\frac{\sec (8 z)}{1+z^{2}}$

$$
g^{\prime}(z)=\frac{\left(1+z^{2}\right) \cdot 8 \cdot \sec (8 z) \tan (82)-2 z \sec (8 z)}{\left(1+z^{2}\right)^{2}}
$$

$$
g_{\tau}^{\prime}(z)=\frac{2 \sec (8 z)\left(4\left(z^{2}+1\right) \tan (8 z)-z\right)}{\left(1+z^{2}\right)^{2}}
$$

(41) $O R$
(11) deriv of sec
(11) chain w/ sec
if they do take out GCF.
(4) answer

$$
\text { (c) } h(x)=\int_{\arctan x}^{5} \sqrt{3+2 t^{3}} d t=-\int_{5}^{\arctan \mathrm{X}} \sqrt{3+2 t^{3}} d t
$$

$$
\begin{aligned}
h^{\prime}(x) & =\frac{d}{d x}\left(-\int_{5}^{\arctan x} \sqrt{3+2 t^{3}} d t\right) \\
& =-\sqrt{3+2(\arctan x)^{3}} \cdot\left(\frac{1}{1+x^{2}}\right) \\
& =-\frac{\sqrt{3+2(\arctan x)^{3}}}{1+x^{2}}
\end{aligned}
$$

(1) neg +2 input

6 (6 points) Let $f(x)=e^{4 x} \cos x$.
(a) (4 points) Find the linearization of the function $f(x)$ at the point $a=0$.

$$
f^{\prime}(x)=4 e^{4 x} \cos x-e^{4 x} \sin x
$$

Point $a=0, f(0)=e^{0} \cos 0=1$
slope $m=f^{\prime}(0)=4 e^{0} \cos 0-e^{0} \sin 0=4$
equation:

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=4(x-0) \\
& y=4 x+1 \tag{4}
\end{align*}
$$

(b) (2 points) Use your linear approximation from part (a) to estimate $f(0.1)$.

$$
\begin{aligned}
f(0.1) & \approx 4(0.1)+1 \\
& =1.4
\end{aligned}
$$

7 (6 points) Find the absolute maximum and absolute minimum of $f(x)=x^{3}-3 x+5$ on the interval $[0,3]$.

$$
\begin{aligned}
& f(x)=x^{3}-3 x+5 \\
& f^{\prime}(x)=3 x^{2}-3 \\
& 0=3\left(x^{2}-1\right) \\
& 0=3(x-1)(x+1) \\
& x=1, x=-1 \\
& \text { N } \\
& \text { not in the } \\
& \text { domain for CN }
\end{aligned}
$$

8 (16 points) Answer the following questions using the given function and its derivatives. Note that this problem continues onto the next page.

$$
f(x)=\frac{3 x^{2}-1}{x^{3}}, \quad f^{\prime}(x)=\frac{-3\left(x^{2}-1\right)}{x^{4}}, \quad f^{\prime \prime}(x)=\frac{6\left(x^{2}-2\right)}{x^{5}}
$$

(a) Find the vertical asymptotes, if any.
(1)

$$
x=0
$$

(b) Find the horizontal asymptotes, if any.
(1) $y=0$
(c) Find the intervals of increase or decrease.

inc on $(-1,0) \cup(0,1)$
dec on $(-\infty,-1) \cup(1, \infty)$
$\operatorname{sign} f^{\prime}$
(1) find CN
(1) sign analysis (1) answer
(d) Find and classify the local maximum and minimum values, if any.

$$
\begin{aligned}
& f(-1)=\frac{3-1}{(-1)}=-2 \text { is a local min } \\
& f(1)=\frac{3-1}{1}=2 \text { is a local max for } y^{\prime} \text { (1) } \\
& \text { for } \\
& \text { classifying }
\end{aligned}
$$

(e) Find the intervals of concavity and the x-values only of the inflection points.

CU on $(-\sqrt{2}, 0) \cup(\sqrt{2}, \infty)$
$C D$ on $(-\infty,-\sqrt{2}) \cup(0, \sqrt{2})$ (1) br intervals

IP at $x=\sqrt{2},-\sqrt{2}$
(1) for PS
(f) Use the information from parts (a) - (e) to sketch the graph. $\sqrt{2} \approx 1.41$

$\begin{aligned} & \text { 䧲n }+4 \text { right } \\ &+3 \text { ven case }\end{aligned}$
+2 a few correct elements
+1 something right
to what??
-1 miss 2 or more $+C$
9 (16 points) Evaluate the following integrals.

$$
\text { (a) } \begin{aligned}
\int \frac{1+x^{2}}{x^{5 / 3}} d x & =\int\left(x^{-5 / 3}+x^{+1 / 3}\right) d x \\
& =-\frac{3}{2} x^{-2 / 3}+\frac{3}{4} x^{4 / 3}+C \\
& =-\frac{3}{2 x^{2 / 3}}+\frac{3 x^{4 / 3}}{4}+C
\end{aligned}
$$

(+1) algebra
(+3) correct powers/ coefficients
(b) $\int \frac{x \sin \left(x^{2}\right)}{8} d x=\int \frac{x \sin u}{8} \cdot \frac{d u}{2 x}$
(41) for sub

$$
\begin{aligned}
& u=x^{2} \\
& d u=2 x d x
\end{aligned}\left\{\begin{array}{l}
=\frac{1}{16} \int \sin u d u \\
=-\frac{1}{16} \cos u+C \\
=-\frac{1}{16} \cos \left(x^{2}\right)+C
\end{array}\right.
$$

(11) for $1 / 16$
(41) for $-\cos (u)$
(11) back substitute
(c) $\int_{e}^{e^{4}} \frac{4 d x}{x(\ln x)^{3}}=\int_{1}^{4} \frac{4}{u^{3}} d u \quad=15 / 8$

$$
\begin{aligned}
& u=\ln x \\
& d u=1 / x d x \\
& x=e, u=1 \\
& x=e^{4}, u=4
\end{aligned} \quad\left\{\begin{array}{l}
=\left.\frac{4 u^{-2}}{-2}\right|_{1} ^{4} \\
=-2(1 / 16-1) \\
=-2(-15 / 6)
\end{array}\right.
$$

(41) for sub
(4i) deal w/bounds
(41) antideriv
(41) ans.

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { (d) } \int 2 x \sqrt{x+5} d x=2 \int(u-5) \sqrt{u} d u \\
\begin{array}{c}
u=x+5 \\
d u=d x \\
x=u-5
\end{array} \quad=2 \int\left(u^{3 / 2}-5 u^{1 / 2}\right) d u \\
=2\left(\frac{2}{5} u^{5 / 2}-5 \frac{2}{3} u^{3 / 2}\right)+c \\
=\frac{4}{5}(x+5)^{5 / 2}-\frac{20}{3}(x+5)^{3 / 2}+c
\end{array}\right\}
\end{aligned}
$$

(71) Sub
(41) clever subbing
(41) antideriv
(41) backsub

10 (5 points) The graph of $f(x)$ is given below.

(a) Evaluate $\int_{0}^{1} f(x) d x=\frac{1}{2} \cdot 1 \cdot 2$

$$
=1,+1
$$

(b) Evaluate $\int_{0}^{3} f(x) d x=\frac{1}{2}(1)(2)-\frac{1}{2}(1)(2)-2(1)$

$$
=-2
$$

(c) Where does $g(x)=\int_{0}^{x} f(t) d t$ achieve a local maximum on the interval (0,7)? Justify your answer. When $g^{\prime}(x)=f(x)=0$ and changes from \oplus to $\Theta_{\text {justify }}(9)$
true for $x=1$ and $x \approx 6.7$ true for $x=1$ and $x \approx 6.7$ (1)
(d) Are there any values of x such that $g(x)=\int_{0}^{x} f(t) d t=0$ on $[0,7]$?

$$
\text { at } x=2
$$

11 (5 points) Water flows into a reservoir at a rate of $1000-20 t$ liters per hour.
(a) What does the quantity $\int_{1}^{5}(1000-20 t) d t$ represent?
(2) The amount of water that flowed into the reser voir between $t=1$ hours and $t=5$ hours.
(b) Assume the reservoir initially contained 50,000 liters, how much water is in the reservoir after 2 hours?

$$
\begin{aligned}
\int_{0}^{2}(1000-20 t) d t & =\left.\left(1000 t-10 t^{2}\right)\right|_{0} ^{2} \\
= & 2000-40 \\
= & 1960 \text { liters addled }+2)
\end{aligned}
$$

for a total of $50000+1960=51,960$ liters

12 (6 points) [Extra Credit] An offshore oil well is 2 kilometers off the coast. The refinery is 4 kilometers down the coast. Laying pipe in the ocean is twice as expensive as on land. What path should the pipe follow in order to minimize the cost?

$$
\begin{align*}
& c=(4-x)+2 \sqrt{x^{2}+4} \\
& c^{3}=-1+2 \cdot \frac{1}{2}\left(x^{2}+4\right)^{-1 / 2} \cdot 2 x \\
& 0=-1+\frac{2 x}{\sqrt{x^{2}+4}}+1 \\
& 1=\frac{2 x}{\sqrt{x^{2}+4}}
\end{align*}
$$

$$
x=2 / \sqrt{3}
$$

