Your Name
Beth Zirbes

Instructor Name

Your Signature
\square
End Time

Problem	Total Points	Score
1	8	
2	10	
3	18	
4	18	
5	10	
6	8	
7	8	
8	6	
9	10	
10	100	
Extra Credit	(5)	
Total		

- This test is closed notes and closed book.
- You may not use a calculator.
- In order to receive full credit, you must show your work. Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) For the function $f(x)$ whose graph is given below, state the value of each quantity if it exists.

(a) $\lim _{x \rightarrow-3} f(x)=2$
(b) $f(-3)=1$
(c) $\lim _{x \rightarrow 1^{-}} f(x)=\bigcirc$
(d) $\lim _{x \rightarrow 1^{+}} f(x)=3$
(e) $\lim _{x \rightarrow 1} f(x)=$ DNE
(f) $\begin{aligned} & x \rightarrow 1 \\ & f(1)\end{aligned}=\underline{0}$
(g) $\lim _{x \rightarrow 4^{-}} f(x)=-\infty$
(h) $\lim _{x \rightarrow 4^{+}} f(x)=\infty$

2 (10 points) A graph of the function $f(x)$ is displayed below.

(a) (6 points) From the graph of f, state the numbers at which f is discontinuous and why. at $x=-4$ because $\lim _{x \rightarrow-4} f(x)$ DNE (left bright limits are at $x=2$ because $\lim _{x \rightarrow 2} f(x) \neq f(2)$ at $x=4$ because $f(4)$ is not defined
(b) (4 points) From the graph of f, state the numbers at which f fails to be differentiable and why. at $x=-4,2,4$ as f is not continuous at $x=0$ as the graph has a corner/cusp.

3 (18 points) Evaluate the following limits. Justify your answers with words and/ or any relevent algebra. Be sure to use proper notation, as points will be deducted for not doing so.

$$
\text { (a) } \begin{aligned}
\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-x-12} & =\lim _{x \rightarrow-3} \frac{x(x+3)}{(x+3)(x-4)} \\
& =\lim _{x \rightarrow-3} \frac{x}{(x-4)} \\
& =\frac{-3}{-7} \\
& =\frac{3}{7}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 1} \ln \left(\frac{5-x^{2}}{1+x}\right)=\ln \left(\lim _{x \rightarrow 1} \frac{5-x^{2}}{1+x}\right)$

$$
=\ln \left(\frac{5-1}{1+1}\right)
$$

$$
=\ln \left(\frac{4}{2}\right)
$$

$$
=\ln (2)
$$

$$
\text { (c) } \begin{aligned}
\lim _{x \rightarrow \infty} \frac{\left(1-x^{2}\right) \frac{1}{x^{2}}}{\left(x^{3}-x+1\right) 1 / x^{2}} & =\lim _{x \rightarrow \infty} \frac{\left(1 / x^{2}-1\right)}{\left(x-1 / x+1 / x^{2}\right)} \\
& =\frac{-1}{\infty} \\
& =0
\end{aligned}
$$

4 (18 points) Evaluate the following limits. Justify your answers with words and/ or any relevant algebra. Be sure to use proper notation, as points will be deducted for not doing so.
(a) $\lim _{x \rightarrow 4^{-}} \frac{\sqrt{x}}{(x-4)^{5}}=-\infty$

As $x \rightarrow 4^{-}$, the numerator approaches $\sqrt{4}=2$, a positive constant.
As $x \rightarrow 4^{-}$, the denominator approaches zero and is negative.
A positive constant divided by a small negative results in negative infinity.

$$
\text { (b) } \begin{aligned}
& \lim _{x \rightarrow 3} \frac{1}{x}-\frac{1}{9} \\
& x-3=\lim _{x \rightarrow 3} \frac{\left(9-x^{2}\right)}{9 x^{2}} \cdot \frac{1}{(x-3)}=-\frac{2}{27} \\
&=\lim _{x \rightarrow 3} \frac{(3+x)(3-x)}{9 x^{2}(x-3)} \\
&=\lim _{x \rightarrow 3} \frac{-(3+x)}{9 x^{2}} \\
&=\frac{-6}{81}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{1+4 x^{6}}}{2-x^{3}} & =\lim _{x \rightarrow \infty} \frac{\sqrt{1+4(-x)^{6}}}{2-(-x)^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+4 x^{6}}}{\left(2+x^{3}\right)} 1 / x^{3} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1 / x^{6}+4}}{2 / x^{3}+1} \\
& =\frac{\sqrt{0+4}}{0+1} \\
& =2
\end{aligned}
$$

5 (10 points) Given $f(x)=\left\{\begin{array}{ll}3 & x \geq 4 \\ \frac{3 x-12}{|x-4|} & x<4\end{array}\right.$ find $\lim _{x \rightarrow 4} f(x)$ or explain why this limit does not exist.

$$
\begin{array}{rlrl}
\lim _{x \rightarrow 4^{-}} f(x) & =\lim _{x \rightarrow 4^{-}} \frac{3 x-12}{|x-4|} & & \text { As } \lim _{x \rightarrow 4^{-}} f(x) \neq \lim _{x \rightarrow 4^{+}} f(x), \\
& =\lim _{x \rightarrow 4^{-}} \frac{3(x-4)}{-(x-4)} & & \text { the } \lim _{x \rightarrow 4^{-}} f(x) \text { does not } \\
& =\lim _{x \rightarrow 4^{-}}(-3) & & \text { exist. } \\
& =-3 \\
\lim _{x \rightarrow 4^{+}} f(x) & =\lim _{x \rightarrow 4^{+}} 3 & &
\end{array}
$$

6 (8 points) Using complete sentences, use the Interemdiate Value Theorem to show that there is a root of the equation $e^{x}=3-2 x$ in the interval $(0,1)$.
Note $e^{x}=3-2 x$ implies $e^{x}+2 x-3=0$.
Let $f(x)=e^{x}+2 x-3$, a continuous function.
Notice $f(0)=e^{0}+2(0)-3=-2<0$ and

$$
f(1)=e+2-3 \approx 4.71-3>0
$$

As $f(0)<0$ and $f(1)>0$, and f is continuous, we know $f(c)=0$ for some c in $(0,1)$. Thus, $e^{x}=3-2 x$ has a root in $(0,1)$.

7 (8 points) Match the graph of each function (a) - (d) with the graph of its derivative I-VIII. Please put your answers in the blanks provided below the graphs.
a.)

c.)

d.)

b.)
(a) Graph (a)'s derivative is given by VII
(b) Graph (b)'s derivative is given by $\frac{\mathrm{V}}{\text { (c) Graph (c)'s derivative is given by }}$ (II
(d) Graph (d)'s derivative is given by \square
IV.

II.

III.

.
VII.

V.

VI.

VIII.

8 (6 points) Given $f(x)=\frac{3}{x}$ the derivative of $f(x)$ is given by $f^{\prime}(x)=-\frac{3}{x^{2}}$. Using this derivative find the equation of the tangent line to $f(x)$ when $x=3$. Give your final answer in slope-intercept form.
point: $f(3)=3 / 3=1$ or $(3,1)$
slope: $m=f^{\prime}(3)=-3 / 9=-1 / 3$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=-1 / 3(x-3) \\
& y-1=-1 / 3 x+1
\end{aligned}
$$

9 (10 points) $\quad y=-1 / 3 x+2$
(a) (2 points) State the limit definition of the derivative of $f(x)$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

(b) (8 points) Given $f(x)=\sqrt{3 x}$, find $f^{\prime}(x)$ using the definition. No credit will be given for answers found using derivative short-cut formulas. Simplify your final answer.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)}-\sqrt{3 x}}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{\sqrt{3 x+3 h}-\sqrt{3 x})}{h}\right)\left(\frac{\sqrt{3 x+3 h}+\sqrt{3 x}}{\sqrt{3 x+3 h}+\sqrt{3 x}}\right) \\
& =\lim _{h \rightarrow 0} \frac{3 x+3 h-3 x}{h(\sqrt{3 x+3 h}+\sqrt{3 x})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{3 x+3 h+\sqrt{3 x})}} \\
& =\lim _{h \rightarrow 0} \frac{3}{\sqrt{3 x+3 h}+\sqrt{3 x}} \\
& =\frac{3}{\sqrt{3 x}+\sqrt{3 x}} \\
& =\frac{3}{2 \sqrt{3 x}}
\end{aligned}
$$

10 (4 points) The number of bacteria after t hours in a controlled laboratory setting is given by the function $n=f(t)$ where n is the number of bacteria and t is measured in hours.
(a) Suppose $f^{\prime}(5)=2000$. What are the units of the derivative?

The units are number of bacteria/nour
or number of bacteria per hour
(b) In the context of this situation, explain what $f^{\prime}(5)=2000$ means using complete sentences.

At $t=5$ hours, the population of bacteria is growing at a rate of 2000 bacteria per hour.

11 (5 points) Extra Credit: Prove that $\lim _{x \rightarrow 0} x^{4} \cos \frac{2}{x}=0$. You must clearly explain your work and cite any relevent theorems for full credit.
Note $-1 \leqslant \cos \left(\frac{2}{x}\right) \leqslant 1$.
As x^{4} is positive, $-x^{4} \leqslant x^{4} \cos \left(\frac{2}{x}\right) \leq x^{4}$.
Since $\lim _{x \rightarrow 0}\left(-x^{4}\right)=0$ and $\lim _{x \rightarrow 0} x^{4}=0$,
$\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{2}{x}\right)=0$ by the squeeze theorem.

