
Your Name	Your Signature	
Instructor Name	End Time	

Problem	Total Points	Score
1	8	
2	10	
3	18	
4	18	
5	10	
6	8	
7	8	
8	6	
9	10	
10	4	
Extra Credit	(5)	
Total	100	

- This test is closed notes and closed book.
- You may **not** use a calculator.
- In order to receive full credit, you must **show your work.** Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so
- Raise your hand if you have a question.

(8 points)

For the function f(x) whose graph is given below, state the value of each quantity if it exists.

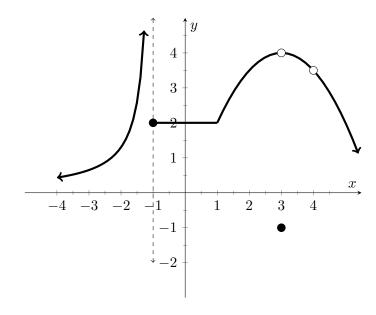
(a)
$$\lim_{x \to -3^{-}} f(x) =$$

(b) $\lim_{x \to -3^{+}} f(x) =$ _____
(c) $\lim_{x \to -3} f(x) =$ _____
(d) $f(-3) =$ _____
(e) $\lim_{x \to 1^{-}} f(x) =$ _____
(f) $\lim_{x \to 1^{+}} f(x) =$ _____

(d)
$$f(-3) =$$

(g)
$$\lim_{x \to 4} f(x) =$$

(b)
$$\lim_{x \to -3^+} f(x) =$$


(e)
$$\lim_{x \to 1^{-}} f(x) =$$

(h)
$$f(4) =$$

(c)
$$\lim_{x \to -3} f(x) =$$

(f)
$$\lim_{x \to 1^+} f(x) =$$

(10 points) A graph of the function f(x) is displayed below.

(a) (6 points) From the graph of f, state the numbers at which f is discontinuous and why.

(b) (4 points) From the graph of *f* , state the numbers at which *f* fails to be differentiable and why.

(18 points) Evaluate the following limits. Justify your answers with words and/ or any relevent algebra. Be sure to use proper notation, as points will be deducted for not doing so.

(a)
$$\lim_{x \to -2} \frac{x^2 + 2x}{x^2 - 3x - 10}$$

(b)
$$\lim_{x \to 1} \ln \left(\frac{7 - x^2}{1 + x} \right)$$

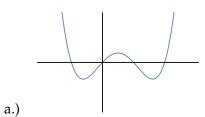
(c)
$$\lim_{x \to \infty} \frac{1 + x - 2x^2}{x^3 + 1}$$

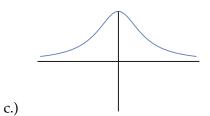
(18 points) Evaluate the following limits. Justify your answers with words and/or any relevent algebra. Be sure to use proper notation, as points will be deducted for not doing so.

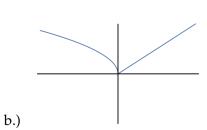
(a)
$$\lim_{x \to 4^+} \frac{-\sqrt{x}}{(4-x)^3}$$

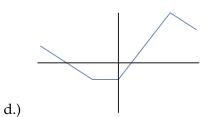
(b)
$$\lim_{x \to 4} \frac{\frac{1}{x^2} - \frac{1}{16}}{x - 4}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{7 + 25x^6}}{2 + x^3}$$

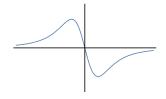

5 (10 points)

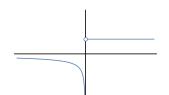

Given $f(x) = \begin{cases} 3 & x \geq 3 \\ \frac{3x-9}{|x-3|} & x < 3 \end{cases}$ find $\lim_{x \to 3} f(x)$ or explain why this limit does not exist.


6 (8 points)

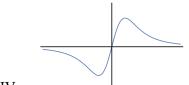

Using complete sentences, use the Interemdiate Value Theorem to show that there is a root of the equation $2e^x = 1 + 8x$ in the interval (0,1).

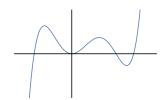
[7] (8 points) Match the graph of each function (a) - (d) with the graph of its derivative I-VIII. Please put your answers in the blanks provided below the graphs.

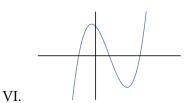




- (a) Graph (a)'s derivative is given by _____
- (b) Graph (b)'s derivative is given by _____
- (c) Graph (c)'s derivative is given by _____
- (d) Graph (d)'s derivative is given by _____

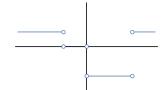





I.

II.

III.



IV.

V.

VII.

VIII.

8 (6 points)

Given $f(x) = \frac{8}{x^2}$ the derivative of f(x) is given by $f'(x) = -\frac{16}{x^3}$. Using this derivative find the equation of the tangent line to f(x) when x = 2. Give your final answer in slope-intercept form.

- 9 (10 points)
 - (a) (2 points) State the limit definition of the derivative of the function f(x).
 - (b) (8 points) Given $f(x) = \sqrt{7x}$, find f'(x) using the definition. No credit will be given for answers found using derivative short-cut formulas. Simplify your derivative.

- 10 (4 points) The number of bacteria after t hours in a controlled laboratory setting is given by the function n = f(t) where n is the number of bacteria and t is measured in hours.
 - (a) Suppose f'(10) = -300. What are the units of the derivative?

(b) In the context of this situation, explain what f'(10) = -300 means using complete sentences.

11 (5 points) Extra Credit Prove that $\lim_{x\to 0} x^2 \sin\frac{1}{x} = 0$. You must clearly explain your work and cite any relevent theorems for full credit.