Your Name

Solutions

Instructor Name

Your Signature
\square
End Time

Problem	Total Points	Score
1	8	
2	8	
3	8	
4	8	
5	16	
6	10	
7	10	
8	15	
9	7	
10	100	
Total		

- The total time allowed for this exam is 60 minutes.
- This test is closed notes and closed book.
- You may not use a calculator.
- In order to receive full credit, you must show your work. Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) Find $d y / d x$ when $3 x y+2 x^{2}-y^{2}=1$. \longleftarrow implicit

$$
\begin{gathered}
\begin{array}{l}
3 \cdot y+3 x \cdot y^{\prime}+4 x-2 y y^{\prime}=0 \\
3 x y^{\prime}-2 y y^{\prime}=-4 x-3 y \\
(3 x-2 y) y^{\prime}=-4 x-3 y \\
y^{\prime}=\frac{-4 x-3 y}{3 x-2 y}=\frac{4 x+3 y}{2 y-3 x}
\end{array}
\end{gathered}
$$

differentiation.

2 (8 points) Given $y=x^{\cos x}$ find y^{\prime}. logarithmic differentiation differentiation!

3 (8 points)
math-eze for "Find the tangent line."
(a) Find the linearization of $f(x)=\sqrt{7+x^{2}}$ at $a=3$.

$$
\begin{array}{ll}
f^{\prime}(x) & =\frac{1}{2}\left(7+x^{2}\right)^{-1 / 2}(2 x) \\
& =\frac{x}{\sqrt{7+x^{2}}} \\
\left.m=f^{\prime}(3)=\frac{3}{\sqrt{7+9}}=\frac{3}{4} \quad \begin{array}{l}
\text { point }(3,4) \\
\text { tangent line: } y-4=\frac{3}{4}(x-3) \\
\text { Answer: } \\
y=\frac{3}{4}(x-3)+4 \\
f(3)
\end{array}\right) \quad \begin{array}{l}
\text { or } \\
L(x)=\frac{3}{4}(x-3)+4 .
\end{array}
\end{array}
$$

(b) Use linear approximation to estimate the value of $f(x)$ at $a=3.1$.
use the tangent line to estimate
the function.

$$
\begin{aligned}
f(3.1) \approx L(3.1) & =\frac{3}{4}(3.1-3)+4=(0.75)(0.1)+4 \\
& =4.075
\end{aligned}
$$

4 (8 points) Find the absolute maximum and minimum of the function $f(x)=\frac{1}{3} x^{3}+2 x^{2}-12 x+1$ on the interval $0 \leq x \leq 3$.
\sim closed interval method. May!

$$
\begin{array}{r}
-24 \\
+112 / 3 \\
\hline-13+2 / 3
\end{array}
$$

Find critical numbers:

$$
f^{\prime}(x)=x^{2}+4 x-12=(x+6)(x-2)=0
$$

$$
x=-6 \text { or } x=2
$$

c not in domain

Answer:
Make chart:
absolute max is 1

$$
\begin{array}{l|l}
x & f(x) \\
\hline 0 & f(0)=1 \\
2 & f(2)=8 / 3+8-24+1=-121 / 3 \text { « smallest. } \\
3 & f(3)=9+18-36+1=-8
\end{array}
$$

$$
\text { absolute } \min \text { is }-12 \frac{1}{3}
$$

5 (16 points) Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{-\cos x}{2}=\frac{-1}{2}$

$$
\text { form } \frac{0}{0}
$$

$\stackrel{\uparrow}{\text { form }} \frac{0}{0}$
just plugin.
(b) $\left.\begin{array}{r}\lim _{t \rightarrow 0} \frac{t^{2}+3}{\cos t}=\frac{0+3}{\cos 0}=\frac{3}{1}=3 . \quad \text { (No L'Hospital's Rule } \\ \text { needed here ' }\end{array}\right)$

6 (10 points) A 9 foot ladder is resting against the wall. The bottom is initially 8 feet away from the wall and is being pushed towards the wall at a rate of $1 \mathrm{ft} / \mathrm{sec}$.
(a) Sketch and label a diagram modeling the situation described above.

$$
\frac{d x}{d t}=-1 \mathrm{ft} / \mathrm{s}
$$

$$
x \text { starts at } x=8
$$

(b) How fast is the top of the ladder moving up the wall 4 seconds after we start pushing? Give your answer using appropriate units.
We want $\frac{d y}{d t}$ when $t=4$

7 (10 points) Sketch the graph of a function $f(x)$ that satisfies all of the given conditions.
(a) The domain of $f(x)$ is $(-\infty, \infty)$.
(b) $f(0)=3 \quad(0,3)$ on graph
(c) $\lim _{x \rightarrow-\infty} f(x)=1$ is $a H A$ on the left.
(d) $f^{\prime}(x)>0$ on the interval $(-\infty, 1) ; f^{\prime}(x)<0$ on the interval $(1, \infty)$
(e) $f^{\prime \prime}(x)>0$ on the interval $(-\infty,-2) ; f^{\prime \prime}(x)<0$ on the interval $(-2, \infty)$

$++\ldots+\vdots$
$++t^{-2}+\ldots$

8 (15 points) Use the information below to answer questions about the function $f(x)$. Make sure you answer the question!

$$
f(x)=\frac{x^{2}}{x^{2}-1}+3, \quad f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{2\left(3 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}}
$$

(a) Find the domain.

$$
(-\infty,-1) \cup(-1,1) \cup(1, \infty)
$$

(b) Determine the intervals on which the function is increasing/decreasing.
$f^{\prime}=0$ when $x=0$
f^{\prime} under when $x= \pm 1$.
but not: Ans:
f is increasing on $(-\infty,-1) \cup(-1,0)$
 and decreasing on $(0,1) \cup(1, \infty)$.
(c) Find the local maximum/minimum values of the function. If something doesn't exist, you must explicitly state this and justify your answer.
local maximum of $f(0)=3$.
no local minimum. only one critical number.
(d) Find the intervals of concavity.

ANS:
f is concave up on $(-\infty,-1) \cup(1, \infty)$ and con cave down on $(-1,1)$.

(e) Find the inflection points. If there aren't any, you must explicitly state this and justify your answer.

No inflection points.
Where the concavity changes, $f(x)$ is undefined.

9 (10 points) A rectangular plot of land is to be fenced in using two kinds of fencing. Two opposite sides will use heavy-duty fencing selling for $\$ 3$ a foot, while the remaining two sides will use standard fencing selling for $\$ 2$ a foot.
(a) What are the dimensions of the rectangular plot of greatest area that can be fenced in at a cost of $\$ 360$?

heavy duty fencing.
goal: maximize area, A.

$$
A=x y ~ P l u g_{\text {in }}
$$

use cost info:

$$
\$ 360=\$ 3 \cdot 2 y+\$ 2 \cdot 2 x
$$

So $360=6 y+4 x$. So $\frac{y}{5}=\frac{360-4 x}{6}=60-\frac{2}{3} x$
Write area, A, as a function of
ONE variable:

$$
\begin{aligned}
& \text { ONE variable: } \\
& A(x)=x \cdot\left(60-\frac{2}{3} x\right)=60 x-\frac{2}{3} x^{2} \text {; domain } x>0 \text {. } \\
& A^{\prime}(x)=60-\frac{4}{3} x=0 \text {; So } x=\frac{3 \cdot 60}{4}=45 . \\
& \text { If } x=45, y=60-\frac{2}{3}(45)=30 .
\end{aligned}
$$

Answer: 45 ft by 30 ft , where the 30 - ft -side is heavy duty.
(b) Use the First or Second Derivative Test to justify your conclusion in Part (a).
$A^{\prime \prime}(x)=-\frac{4}{3}<0$. So $A(x)$ is concave down at $x=45$, the only critical point. Thus, $A(x)$ has a maximum at $x=45$.

10 (7 points) In this problem we are going to use Newton's method to estimate $\sqrt{8}$ using the function $f(x)=x^{2}-8$.
(a) State an appropriate initial value x_{1} for use in applying Newton's method. Justify your answer. Since $2^{2}=4<8, x=2$ istor small. Since $3^{2}=9>8, x=3$ is too big. So I choose an x-value between them, say $x=2.5$.
(b) Sketch the function and illustrate the idea behind Newton's Method using starting point $x_{1}=-1$.

(c) Suppose you are given an initial value of $x_{1}=-1$. Find the next estimate x_{2} given by Newton's method for a root of the function $f(x)$.
Newton's Formula: $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
So $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=x_{1}-\frac{\left(x_{1}\right)^{2}-8}{2 x_{1}}$
using $x_{1}=-1$, we obtain:

$$
x_{2}=(-1)-\frac{(-1)^{2}-8}{2(-1)}=-1-\frac{-7}{-2}=-1-\frac{7}{2}=\frac{-9}{2}
$$

