October 5, 2007
Faudree NAME:

There are 9 questions on this exam for a total of 100 points. You may not use calculators, books, or notes. You must show your work to receive full credit. There is a 5 point extra credit problem at the end of the exam. You have one hour to complete the exam.

1. Let $f(x)=\sqrt[4]{1-x}$.
(a) (6 points) Find $f^{-1}(x)$.
(b) (4 points) Determine the domain and range of $f^{-1}(x)$.
2. (5 points each) Evaluate the limits below, if possible. Give the most complete answer.
(a) $\lim _{x \rightarrow \sqrt{3}} \frac{2+\cos x}{x}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{4-x^{2}}{2-x-x^{2}}$
(c) $\lim _{x \rightarrow-3^{+}} \frac{1+e^{x}}{3+x}$
3. (5 points each) Evaluate the following limits at infinity, if possible. Give the most complete answer.
(a) $\lim _{t \rightarrow \infty} \frac{5 t-3 t^{2}}{\sqrt{\pi+2 t^{4}}}$
(b) $\lim _{y \rightarrow \infty} \ln \left(1+\frac{1}{y}\right)$
4. (5 points) For what x-values, if any, does the function $H(x)=\frac{5}{2 e^{x-1}-3}$ fail to be defined?
5. (10 points) Sketch the graph of $y=2 \sin (x+1)$. Label any x - or y-intercepts and label high and low points on the curve. I recommend you sketch it in parts. That is, first sketch and label $y=\sin x$. Next, sketch and label $y=\sin (x+1)$. Then, sketch and label your final answer. This is a way of ensuring some partial credit even if your final answer is wrong.
6. (a) (5 points) Complete the definition of continuity.

A function f is continuous at a number a if
(b) (5 points) Given $f(x)=\left\{\begin{array}{ll}2+\cos x & x<0 \\ \frac{3}{1+x^{2}} & 0 \leq x\end{array}\right.$, use the definition of continuity to show that $f(x)$ is continuous at $x=0$. You must show your work.
(c) (5 points) Does the graph of $f(x)$ from part (b) have any horizontal asymptotes? Explain your answer in detail.
7. (a) (5 points) Complete the definition of the definition of the derivative. The derivative of a function f is defined as: $f^{\prime}(x)=$
(b) (15 points) Use the definition of the derivative to find the derivative of $g(x)=3 x+\frac{1}{x}$.
8. (10 points) Assume $f(x)=e^{x}+x+2$ and $f^{\prime}(x)=e^{x}+1$. Find the equation of the line tangent to the graph of $f(x)$ at $x=0$.
9. (5 points) Write the area of a square, A, as a function of its perimeter, P.

EXTRA CREDIT (5 points)
Use the definition of the derivative to prove the Chapter 3 Section 1 derivative rule below:

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]
$$

where c is a fixed constant.

