"pieces" are continuous.)

- 1. Let $f(x) = \sqrt[4]{1-x}$.
 - (a) I will apply the usual method. We start with $y = \sqrt[4]{1-x}$ and switch x and y to get: $x = \sqrt[4]{1-y}$. Now solve for y to get $y = 1 x^4$. So, $f^{-1}(x) = 1 x^4$.
 - (b) Determine the domain and range of f⁻¹(x). For me it is easier to look at f. domain of f : We need 1 − x ≥ 0. So 1 ≥ x. So the domain of f = range of f⁻¹ = (-∞, 1].

 $\begin{array}{c} \text{domain of } j = \text{range of } j = (-\infty, 1]. \\ \text{for } j = (-\infty, 1) \\ \text{for } j =$

range of f: Since the function is defined as the *positive* square root, we get all real numbers greater than or equal to zero. So the

range of $f = \text{domain of } f^{-1} = [0, \infty)$.

Note that the domain of f^{-1} CANNOT be $(-\infty, \infty)$ as it would not, in that case, have an inverse.

2. Evaluate the limits below, if possible. Give the most complete answer.

(a)
$$\lim_{x \to \sqrt{3}} \frac{2 + \cos x}{x} = \frac{2 + \cos \sqrt{3}}{\sqrt{3}}$$

(The method is to plug in $\sqrt{3}$ for x since all the

(b)
$$\lim_{x \to 2^{-}} \frac{4 - x^2}{2 + x - x^2} = \lim_{x \to 2^{-}} \frac{(2 - x)(2 + x)}{(2 - x)(1 + x)} = \lim_{x \to 2^{-}} \frac{2 + x}{1 + x} = 4/3$$

(c)
$$\lim_{x \to -3^+} \frac{1+e^x}{3+x} = \infty$$

Reasoning: We observe that $\lim_{x \to -3} (1+e^x) = 1+e^{-3} > 0$ and $\lim_{x \to -3^+} (3+x) = 0$
and always positive. Thus the quotient approaches positive infinity.

3. Evaluate the following limits at infinity, if possible. Give the most complete answer.

(a)
$$\lim_{t \to \infty} \frac{5t - 3t^2}{\sqrt{\pi + 2t^4}} \cdot \frac{\frac{1}{t^2}}{\frac{1}{t^2}} = \lim_{t \to \infty} \frac{\frac{5}{t} - 3}{\sqrt{\frac{\pi}{t^4} + 2}} = -3/\sqrt{2}$$

(b)
$$\lim_{y \to \infty} \ln(1 + \frac{1}{y}) = \ln(1) = 0$$

Reasoning: We observe that $\lim_{y \to \infty} 1 + \frac{1}{y} = 1$. Thus, $\lim_{y \to \infty} \ln(1 + \frac{1}{y}) = \lim_{x \to 1} \ln x = \ln 1 = 0$.

4. For what x-values, if any, does the function $H(x) = \frac{5}{2e^{x-1}-3}$ fail to be defined? We must avoid $2e^{(x-1)}-3=0$. Now, solve this for $x:e^{(x-1)}=3/2$. So, $x-1=\ln(3/2)$. Finally: $x=1+\ln(3/2)$.

5. Sketch the graph of $y = 2\sin(x+1)$. The graph looks like $y = \sin(x)$ but is shifted left 1 unit and stretched by 2 units vertically. Thus, the *x*-intercepts are: ..., $-\pi - 1, -1, \pi - 1, 2\pi - 1, 3\pi - 1$ The *y*-intercept is $2\sin(1)$. A high point is $(\pi/2 - 1, 2)$, a low point is $(3\pi/2 - 1, -2)$. You $y = \sin x$ $y = \sin x$ $y = \sin x$ $y = \sin (x - 1)$ $y = \sin(x - 1)$

can check this on your calculator.

Fall 2007

6. (a) Complete the definition of continuity.

A function f is continuous at a number a if (see your text!)

- (b) Given $f(x) = \begin{cases} 2 + \cos x & x < 0 \\ \frac{3}{1+x^2} & 0 \le x \end{cases}$, use the definition of continuity to show that f(x) is continuous at x = 0. You must show your work. We will have to find f(0) and $\lim_{x\to 0} f(x)$ and make sure they are equal. So $f(0) = 3/(1+0^2) = 3$. We need the two-sided limit. But since the function is defined in pieces, we will have to check each side separately and hope they are the same. So, $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (2 + \cos x) = 2 + \cos 0 = 3$. And, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} (3/(1+x^2)) = 3/(1+0^2) = 3$. Finally, since the two one-sided limits are in fact the same, we can conclude : $\lim_{x\to 0} f(x) = 3 = f(0)$ and f is indeed continuous at x = 0.
- (c) Does the graph of f(x) from part (b) have any horizontal asymptotes? Explain your answer in detail. Here we have to check the limit of f as x approaches ∞ and $-\infty$. So, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{3}{1+x^2} = 0$. So, y = 0 is an asymptote. $\lim_{x\to-\infty} f(x) = \lim_{x\to\infty} 2 + \cos x$. Now this limit does not exists because the cosine function oscillates. So there are no other asymptotes.
- 7. (a) Complete the definition of the definition of the derivative.

The derivative of a function f is defined as: f'(x) = (see your text)

(b) Use the definition of the derivative to find the derivative of $g(x) = 3x + \frac{1}{x}$.

$$g'(x) = \lim_{h \to 0} \frac{(3(x+h) + \frac{1}{x+h}) - (3x + \frac{1}{x})}{h} = \lim_{h \to 0} \frac{3x + 3h + \frac{1}{x+h} - 3x - \frac{1}{x}}{h}$$
$$= \lim_{h \to 0} \frac{3h + \frac{1}{x+h} - \frac{1}{x}}{h} = \lim_{h \to 0} \frac{3h}{h} + \lim_{x \to 0} \frac{1}{h} \cdot \frac{x - (x+h)}{x(x+h)}$$
$$= \lim_{h \to 0} 3 + \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h}{x(x+h)} = 3 + \lim_{h \to 0} \frac{-1}{x(x+h)} = 3 - \frac{1}{x^2}$$

8. Assume f(x) = e^x + x + 2 and f'(x) = e^x + 1. Find the equation of the line tangent to the graph of f(x) at x = 0.
We need a point on the line and the slope of the line.

Point: $f(0) = e^0 + 0 + 2 = 3$. So the point (0,3) is on the line. Slope: $m = f'(0) = e^0 + 1 = 2$. Finally, the equation of the line is: y - 3 = 2(x - 0) or y = 2x + 3.

9. Write the area of a square, A, as a function of its perimeter, P. So we need an equation that has A on one side and the other has P's and numbers and nothing else. The standard equations for A and P are in terms of the side of the square, s. That is: $A = s^2$ and P = 4s.

So, s = P/4 which we plug into the first equation to get: $A = (p/4)^2$, the answer.

EXTRA CREDIT

Use the definition of the derivative to prove the Chapter 3 Section 1 derivative rule below:

$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$$

where c is a fixed constant.

This argument is derived in section 3.2. And thank you to the two students who got it perfectly right.