Your Name

Instructor Name
\square

Your Signature
\square
End Time
\square

Desk Number

- The total time allowed for this exam is 90 minutes.
- This test is closed notes and closed book.
- You may not use a calculator.
- In order to receive full credit, you must show your work. Be wary of doing computations in your head. Instead, write out your computations on the exam paper.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

This exam is printed double-sided.
There are problems on both sides of the page!
If you need more space, you may use extra sheets of paper. If you use extra pages:

- Put your name on each extra sheet
- Label your work with the problem you're working on
- Write on the exam problem that there is additional work at the end
- Turn in your additional pages at the end of your exam.

1 (10 points) Consider the function $g(x)=\frac{4}{x}+x$.
(a) Find the critical number(s) of $g(x)$.
(b) Find the absolute maximum and absolute minimum values of $g(x)$ on the interval $[1 / 2,3]$.

2 (10 points) A box has a square base and a height that is twice as large as the length of the base. If the length of the base is measured to be 4 cm with an error of $\pm 1 \mathrm{~mm}(=1 / 10 \mathrm{~cm})$, what is the (absolute) error in the volume of the box? (That is, how much "extra" or "missing" volume is there?) Show your work.

3 (14 points) The following graph shows the DERIVATIVE k^{\prime} of some function k.

The following questions are about the function $k(x)$, not the graphed $k^{\prime}(x)$.
(a) Critical points of $k(x)$: \qquad
(b) On what intervals is k increasing or decreasing?

Increasing: \qquad
Decreasing: \qquad
(c) At what values of x does k have a local maximum or minimum? If none, say so.

Local Maxima: $x=$ \qquad Local Minima: $x=$
(d) On what intervals is k concave up or concave down? Use interval notation.

Concave up: \qquad Concave down: \qquad
(e) At what values of x does k have inflection points? If none, say so.

Inflection points: $x=$ \qquad

4 (14 points) A television camera at ground level is filming the lift-off of a space shuttle that is rising vertically according to the position equation

$$
h(t)=50 t^{2},
$$

where \mathbf{h} is measured in feet and is \mathbf{t} measured in seconds (see picture below). The camera is 5000 feet from the launch pad.

(a) Find the height and velocity [i.e., change in height] of the shuttle 10 seconds after lift-off.
(b) Find the rate of change in the angle of elevation of the camera (θ) at 10 seconds after lift-off. [Include units in your answer]

5 (12 points) For each limit:
(i) Write the form of the limit AND state whether the form is indeterminate (include the type).
(ii) Find the limit. If you use a L'Hôpital Rule, indicate it by a symbol (such as $\mathbf{L}^{\prime} \mathbf{H}$ or \mathbf{H}) over the equal sign.
(a) $\lim _{x \rightarrow 0} \frac{\sin (2 x)+7 x^{2}}{x(x+1)}$

Type:
(b) $\lim _{x \rightarrow 0} \frac{2 \cos (\pi x)-1+x^{2}}{2 e^{4 x}}$

Type:
(c) $\lim _{t \rightarrow \infty} t \ln \left(1+\frac{3}{t}\right)$

Type:

6 (10 points) Consider the implicitly defined curve given by

$$
x^{2}-y^{2}=1+x y .
$$

(a) Show that the point $P=(-1,1)$ is on the curve. Then draw and label the point P in the figure.
(b) Compute y^{\prime} at P.
(c) Find the equation of the tangent line at P. Then draw this tangent line in the figure.

7 (14 points) Suppose an open cup in the shape of a cylinder is to be made with surface area 48 in^{2}. What dimensions (radius and height) will maximize the volume of the cup?
[surface area $=\pi r^{2}+2 \pi r h$ and volume $=\pi r^{2} h$, where r is the radius of the cup and h is the height.]

8 (16 points) We want to sketch a graph of a function $f(x)$ with certain specified properties.
(a) Fill in the following tables. (You can use words or pictures.)

function information	what you conclude about the behavior of f
Domain of f is $(-\infty, \infty)$	
$\lim _{x \rightarrow-\infty} f(x)=-2$	
$\lim _{x \rightarrow \infty} f(x)=5$	
$f(0)=10$	

x	$x<0$	0	$x>0$
sign/value of $f^{\prime}(x)$	+	0	-
Behavior of $f(x)$			

x	$x<-5$	-5	$-5<x<3$	3	$x>3$
sign of $f^{\prime \prime}(x)$	+	0	-	0	+
Behavior of $f(x)$					

(b) Sketch the graph of f that has all of the properties listed in the tables (does not need to be drawn to scale). Label/draw on the graph the following:

- a point at any local maxima/minima,
- a box at any inflection points,
- a dashed line for any horizontal/vertical asymptotes along with equation,
- tick marks on axes to indicate important x - and y-values.

Extra Credit (5 points)

Use the Mean Value Theorem to prove that $a-b \leq \sin b-\sin a \leq b-a$ given the interval $[a, b]$.

