Fall 2023

Calculus I: Midterm 2

Name: \qquad

Rules:

- Partial credit will be awarded, but you must show your work.
- You may have a single handwritten $3^{\prime \prime} \times 5^{\prime \prime}$ notecard, both sides.
- Calculators are not allowed.
- Place a box around your FINAL ANSWER to each question where appropriate.
- Turn off anything that might go beep during the exam.

Good luck!

Problem	Possible	Score
1	8	
2	7	
3	18	
4	11	
5	12	
6	12	
7	10	
8	12	
9	10	
Extra Credit	5	
Total	100	

1. (8 points)

Consider the function $f(x)=\sqrt[3]{x}$.
a. Determine the linear approximation $L(x)$ of the function at the point $a=64=4^{3}$.
b. Use the linear approximation you just found to estimate $\sqrt[3]{70}$.

2. (7 points)

Consider the function

$$
j(t)=\cos (t)+(\sin (t))^{2} .
$$

Determine the absolute minimum and absolute maximum values of $j(t)$ on the interval $[0, \pi]$. Show your work.

Absolute maximum: \qquad
Absolute minimum: \qquad
3. (18 points)

Answer the questions below about the function $f(x)=\frac{x^{4}}{e^{x}}$. It is a fact that after simplification,

$$
f^{\prime}(x)=\frac{-x^{3}(x-4)}{e^{x}}, \quad \text { and } f^{\prime \prime}(x)=\frac{x^{2}(x-6)(x-2)}{e^{x}}
$$

You must show your work and justify your conclusion with a few words or a computation. Make sure someone else can follow your work.
a. Determine the intervals where f is increasing and where f is decreasing. Show your work.

Increasing: \qquad Decreasing: \qquad (If none write "none".)
b. Fill in the blanks: $f(x)$ has a local maximum at $x=$ \qquad and a local minimum at $x=$
\qquad (If none, write "none".)
c. Find all intervals where f is concave up and where f is concave down. Show your work.

Concave up: \qquad Concave down: \qquad (If none write "none".)
d. Fill in the blanks: $f(x)$ has (an) inflection point(s) at $x=$ \qquad . (If none, write "none".)

4. (11 points)

Sketch a graph of a function $h(x)$ that satisfies all of the following properties.
After drawing the graph:

- Label on the graph the following things, if they exist, by drawing a point on the graph and labeling: any local maximums by writing LOCAL MAX, local minimums by writing LOCAL MIN, inflection points by writing IP
- Draw any horizontal and vertical asymptotes with dashed lines and label them with their equation.
- Mark any important x-values and y-values on the x - and y-axes.

Properties:

- The domain of $h(x)$ is $(-\infty, \infty)$
- $h(-2)=4$ and $h(2)=0$
- $h^{\prime}(x)>0$ when $x<-2$
- $h^{\prime}(x)<0$ when $x>-2$
- $h^{\prime \prime}(x)<0$ when $x<0$
- $h^{\prime \prime}(x)>0$ when $x>0$
- $\lim _{x \rightarrow-\infty} h(x)=-\infty$
- $\lim _{x \rightarrow \infty} h(x)=-5$

5. (12 points)

An open box is to be constructed by cutting squares out of the four corners of a 3 foot by 3 foot piece of cardboard and folding up the sides. (See the diagram. Note that the box will not have a lid, and the height of the box will be x feet.)

a. Write an equation for the volume of the box in terms of the variable x.
b. Determine the dimensions of the box with the largest volume. Show your work, and use calculus to justify that your answer is the maximum. Include units in your final answer. An answer with no clear justification will not receive full credit.
\qquad width: \qquad height: \qquad

6. (12 points)

Evaluate the following limits. Show your work. If you use L'Hôpital's rule, you must indicate where you are using it by writing $\stackrel{H}{=}$ or $\stackrel{L^{\prime} H}{=}$ or something similar.
a. $\lim _{x \rightarrow 2} \frac{3^{x}-x^{3}-1}{x-2}$
b. $\lim _{x \rightarrow 0} \frac{x^{2}-x}{2 \sin x-2}$
c. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
d. $\lim _{x \rightarrow \infty} x e^{-x}$

7. (10 points)

A giant ice cylinder, being prepared for the World Ice Art Championships, is carved to have a radius of 100 cm and a height of 300 cm . The cylinder is uniformly melting, which means that the ratio of the radius to the height remains constant: specifically, $\frac{r}{h}=\frac{1}{3}$. If the height is decreasing at a rate of $2 \mathrm{~cm} /$ hour, how fast is the surface area changing when the cylinder is 150 cm tall?

Write your answer in a complete sentence, using units.
Recall that the surface area of a cylinder with radius r and height h is
 $S=2 \pi r h+2 \pi r^{2}$.
8. (12 points)

A portion of the function

$$
f(x)= \begin{cases}\sqrt{25-x^{2}} & -5 \leq x \leq 5 \\ -\frac{1}{2}(x-5) & x \geq 5\end{cases}
$$

is graphed below.

a. We want to approximate $\int_{0}^{9} f(x) d x$ using three right-hand rectangles.
i. Draw the three right-hand rectangles on the graph. Lightly shade them in. Make sure I can tell where your rectangles are and try to be reasonably precise.
ii. Now approximate $\int_{0}^{9} f(x) d x$ using the three right-hand rectangles. (Your answer should be a number.)
b. Use geometry to compute $\int_{0}^{9} f(x) d x$ exactly. Show your work.
9. (10 points)
a. Determine $H(\theta)=\int \theta^{2 / 3}+(\sec (\theta))^{2}+5 d \theta$. (Give the most generic answer.)
b. Determine $G(x)=\int \frac{14 x^{3}+2 x+1}{x^{3}} d x$. (Give the most generic answer.)
c. Find two different antiderivatives for the function $f(t)=4 e^{t}+\frac{1}{t}$.

Extra Credit (5 points) The left-hand graph shows the DERIVATIVE k^{\prime} of some function k.

The following questions are about the original function $k(x)$, not the graphed $k^{\prime}(x)$.
a. At what value(s) of x does k have a local maximum or minimum? If none, say so. Write some words to explain how you know that these x-values correspond to a local max or min (or not).

Local Max: $x=$ \qquad Local Min: $x=$ \qquad
b. At what values of x does k have inflection points? If none, say so. Write some words to explain how you know that these x-values correspond to inflection points (or not).

Inflection points: $x=$ \qquad
c. Sketch the graph of the original function $k(x)$ on the axes to the left of the derivative, using the fact that $k(-7)=1$. Your sketch does not have to be to scale, but it should show the right information regarding increasing/decreasing/max/min/concavity/inflection points. Mark important values on the x - and y-axes.

